Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    3d systems office 640x381 1

    3D Systems Sees Improved Profitability in Q2 Despite a 16% Drop in Revenue

    September 8, 2025
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    3d systems office 640x381 1

    3D Systems Sees Improved Profitability in Q2 Despite a 16% Drop in Revenue

    September 8, 2025
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

3D-printed ceramics may increase gas turbine fuel efficiency, researchers report

News By AM Chronicle EditorJune 26, 20233 Mins Read
psu news lynch turbine
Stephen Lynch, associate professor of mechanical engineering, holds metal 3D-printed turbine vanes that are tested in the high speed cascade shown in the background. Lynch was part of a team that 3D printed a turbine component with ceramics, which are more heat tolerant than traditional metals. Credit: Kate Myers/Penn State. All Rights Reserved.
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Airplane engines can reach temperatures of more than 3,000 degrees Fahrenheit. The hotter they get, the more fuel efficient they become, but that efficiency is limited by how hot the metallic components inside the turbine can get without deforming.

A team that includes Penn State researchers recently 3D printed a turbine component with ceramics, which are more heat tolerant than the conventional metals. The resulting component has complex internal cooling features that enable it to withstand higher temperatures and, as a result, increase fuel efficiency.

The researchers will present their methods and results at the ASME 2023 Turbomachinery Technical Conference and Exposition, which will be held June 26-30 in Boston. Their work will be published in the conference’s proceedings and was also recommended for publication in the ASME Journal of Turbomachinery.

“There is a fair amount of research on ceramic materials for gas turbines, but not a lot of it has generated realistically shaped parts because the manufacturing is so difficult to do,” said paper co-author Stephen Lynch, associate professor of mechanical engineering at Penn State. “This process was unique in that we could generate complex-shaped parts very easily and very cheaply.”

The researchers used design optimization and a novel technique for 3D printing — also known as additive manufacturing — more heat-resistant airfoils using a polymer-derived ceramic material. These turbine components are petal-shaped blades that constantly redirect the hot gas inside the gas turbine engine to extract energy. This energy is used partially to power the rest of the engine, and the rest becomes thrust for an aircraft or power to turn an electric generator.

“We worked with collaborators at the Colorado School of Mines and the University of Wyoming who had embedded ceramic fibers into additively printed ceramics,” Lynch said, explaining that these polymer-derived ceramics are created by firing a plastic-like base in a furnace. “We adapted that to create these turbine airfoils, but also leveraged the design freedom of additive manufacturing to create internal features that dramatically improve the effectiveness of the cooling air inside the blade.”

By using 3D printing in conjunction with the polymer-derived ceramics, the researchers were able to create the exact shapes needed to withstand more heat and perform well in the gas turbines. The team tested the parts in Penn State’s high speed cascade facility, housed in the Steady Thermal Aero Research Turbine Lab.

“We found that with the right design for the part, the ceramic airfoil shape that we 3D printed can perform just as well as the metal components,” Lynch said. “Our hope is that this technology could be used to develop ceramic parts that perform similarly to metallic parts in gas turbine engines but can tolerate higher temperatures for greater fuel efficiency.”

The other authors on this paper were Andrew Fox, graduate student in mechanical engineering at Penn State; Jason Young and Carl Frick of the Colorado School of Mines; and Jennifer Hankins, Kyle Kuhn, Stephan Brinckmann and Ray Fertig III of the University of Wyoming. Michael Hickner, the Craig A. Rogerson Endowed Professor in the Michigan State University College of Engineering currently, and professor of materials science and engineering, of chemical engineering and of chemistry at Penn State at the time of the research, also contributed to the project.

The U.S. Department of Energy supported this work.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

Original Source

3d printing additive manufacturing Ceramics Energy Engineering Penn State turbine USA
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
3d systems office 640x381 1 News

3D Systems Sees Improved Profitability in Q2 Despite a 16% Drop in Revenue

September 8, 20252 Mins Read
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75