Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    person wearing smart watch up close

    WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

    May 15, 2025
    Credits: MX3D

    MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

    May 15, 2025
    Credit: University of Glasgow

    University of Glasgow lab transforms 3D printing for space manufacturing

    May 15, 2025
    Ryan Watkins (center) receiving the Advanced Finishing award from Bonnie Meyer (left) and Corey Wardrop.

    Additive Manufacturing Users Group Names Technical Competition Winners

    May 3, 2025
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
    Blue White Simple Financial Tips Blog Banner 19

    How 4 Industries Are Transforming with Polymer 3D Printing

    April 25, 2025
    Raman 2 Engine, Credits: Skyroot

    India’s Skyroot Aerospace Tests 3D-Printed Vacuum Engine for Spaceflight

    April 21, 2025
    Customized Medicine

    How 3D Printing is Revolutionizing Customized Medicine

    April 17, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    person wearing smart watch up close

    WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

    May 15, 2025
    Credits: MX3D

    MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

    May 15, 2025
    Credit: University of Glasgow

    University of Glasgow lab transforms 3D printing for space manufacturing

    May 15, 2025
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Insights

New tungsten alloy in powder form suitable for 3D printing

Insights By Aditya ChandavarkarJuly 29, 20215 Mins Read
New tungsten alloy in powder form suitable for 3D printing
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Tungsten alloys (WNiFe / WNiCu) are used because of their corrosion resistance against molten metal and high thermal conductivity for chill-mould casting processing of aluminium. Yet, also in tool manufacture and for shielding from alpha and gamma radiation, the heavy metal with its density comparable to gold is indispensable. However, at around 3,400°C, tungsten has the highest melting point of all chemical elements and is therefore very difficult to work with, as well as due to its Mohs hardness of 7.5. As a result, components with more complex shapes, such as curves or conical bores, often have to be switched to hot-work tool steel, which is easier to form. In order to enable the use of tungsten for those more demanding geometries and thus to increase the efficiency and longevity of the components, Bayerische Metallwerke GmbH, which belongs to the Traunstein-based Gesellschaft für Wolfram Industrie mbH, has developed a new manufacturing process for the tungsten alloys WNiFe and WNiCu and patented it in early 2021. This is characterised by the fact that the multi-phase mixed crystal alloy is obtained in a powder form that is suitable as a starting material for 3D printing and coating processes.

New tungsten alloy in powder form suitable for 3D printing

“Due to its resistance to corrosion and erosion from molten metals as well as its excellent thermal conductivity, tungsten is the material of choice in the field of cast aluminium,” says Nabil Gdoura, research and development engineer at Bayerische Metallwerke GmbH. “The very high density of 19.25 g/cm3 in its pure form also makes it a good alternative to the harmful lead, which is still used for radiation shielding in medicine, for example.” In the case of casting moulds, also known as chill-moulds, used in aluminium processing, the aim is often to have long but at the same time very thin and sometimes conically shaped cooling channels of less than 1 mm in diameter in order to ensure the most uniform and rapid heat dissipation possible. Otherwise, the material quality of the end product can be adversely affected by the formation of cracks. Such precise and sometimes curved shapes are impossible to model from the hard heavy metal, whose extremely high melting point is between 3,387 and 3,422 °C, using conventional machining or forming processing techniques. Therefore, for these complex components for the purposes mentioned, it has so far been necessary to switch to hot-work steel, which can be brought into almost any desired shape with the help of 3D printing techniques.

After completing the two-year development phase, Bayerische Metallwerke applied for a patent for their new manufacturing process for a tungsten alloy product and its further use at the beginning of 2020, which was finally granted in January of this year. “The special feature of our tungsten-nickel-iron alloy is that we obtain it in the form of a pre-alloyed powder,” explains Dr.-Ing. Hany Gobran, research and development manager at Bayerische Metallwerke and inventor of manufacturing technology. “This is suitable as a starting product for 3D printing and coating processes.” In the absence of an alternative, only a mixed powder has so far been used to make tungsten usable for components with complex geometries. The main disadvantage of such mixtures, however, results from the different melting points of tungsten (around 3,400 °C) and of nickel and iron, both of which change their physical state at around 1,500 °C. As a result, a large part of the two added substances evaporates in an uncontrolled manner during the melting process in the further processing process. This is because the boiling points of nickel and iron are already around 2,700 °C and 3,000 °C respectively. Thanks to the pre-alloying in the process developed by Gobran, on the other hand, all three elements are combined as a multiphase material in each individual powder particle, so that their composition and distribution in the end product can be precisely controlled and no loss of the binder metals has to be accepted.

According to the common standardised variants, the new alloy can be produced with 80 to 98.5 % (weight) tungsten, 0.1 to 15 % (weight) nickel and 0.1 to 10 % (weight) iron and/or copper. This achieves a density of the end product of 17 to 18.8 g/cm3, which is desirable for applications in the aluminium industry, tool manufacture and for alpha and gamma radiation shielding. “The higher the proportion of tungsten in the end product, the more resistant it is to molten aluminium and the better its thermal conductivity,” explains Gobran. “If, on the other hand, good ductility and mechanical machinability play a greater role, the proportion of tungsten in the alloy can also be reduced accordingly. The composition can therefore always be adapted to the specific application and the respective complexity of the shape.” During the comminution process as part of the manufacturing process, the flow behaviour and the grain size of the powder between 10 and 200 µm can also be determined. In this way, the alloy is individually prepared for the desired type of further processing – such as plasma coating processes or additive manufacturing.

If, for example, the hot-work steel previously used for thin and conical cooling channels in cast aluminium chill-moulds is replaced by the tungsten alloy developed by Gobran, the application benefits not only from the heavy metal’s resistance to corrosion and erosion. Compared to steel, tungsten also has the advantage of much higher thermal conductivity, so that the wear on the chill-moulds can be massively reduced. Due to its higher density, the alloy product is also an alternative to poisonous lead, which is used not only for radiation shielding, but also as a stabiliser – for example in the tool industry. “Another special feature of our alloy is that we can make the powder from scraps or chips,” adds Gdoura. “This is a big step forward from both an economic and environmental perspective, as it allows us to recycle and upcycle waste products from conventional processes.”

Aditya Chandavarkar
Aditya Chandavarkar
Website
Aditya Chandavarkar is a established entrepreneur with business interests in manufacturing, innovative technology, training and consulting. Among other activities he the Co-Founder of Indian 3D Printing Network and is a subject matter expert on 3D Printing/Additive Manufacturing with good grasp of Additive Manufacturing trends in the Region including India, APAC, Middleeast and Africa.
3d printing additive manufacturing Casting Manufacturing Tooling tungsten alloys
Aditya Chandavarkar
  • Website

Aditya Chandavarkar is a established entrepreneur with business interests in manufacturing, innovative technology, training and consulting. Among other activities he the Co-Founder of Indian 3D Printing Network and is a subject matter expert on 3D Printing/Additive Manufacturing with good grasp of Additive Manufacturing trends in the Region including India, APAC, Middleeast and Africa.

LATEST FROM AM
person wearing smart watch up close News

WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

May 15, 20255 Mins Read
Credits: MX3D News

MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

May 15, 20254 Mins Read
Credit: University of Glasgow News

University of Glasgow lab transforms 3D printing for space manufacturing

May 15, 20254 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75