Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Uncategorized

3D-printed metal molds poised to accelerate US auto manufacturing

Uncategorized By Chinmay SarafJune 2, 20253 Mins Read
Using a toolpath strategy for weight reduction, two near-net shape dies were manufactured using a gas metal arc welding additive manufacturing process at the Lincoln Electric Additive Solutions facility. Credit: Lincoln Electric
Using a toolpath strategy for weight reduction, two near-net shape dies were manufactured using a gas metal arc welding additive manufacturing process at the Lincoln Electric Additive Solutions facility. Credit: Lincoln Electric
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Recent advancements at the Department of Energy’s Oak Ridge National Laboratory show that 3D-printed metal molds offer a faster, more cost-effective and flexible approach to producing large composite components for mass-produced vehicles than traditional tooling methods.

The research, conducted at the Manufacturing Demonstration Facility, or MDF, at ORNL, confirms that large-scale additive manufacturing is well-suited for creating complex metal molds, with efficiencies that could accelerate the adoption of lightweight composite materials in the automotive sector.

“This kind of technology can help reindustrialize the U.S. and boost its competitiveness by creating smarter, faster ways to build essential tools,” said lead researcher Andrzej Nycz with ORNL’s Manufacturing Robotics and Controls group. “It brings us closer to an automated, intelligent production process.”

Traditionally, metal tools are made by subtracting material from large, forged steel blocks — a process that removes up to 98% of the original material, generates significant waste and often takes months due to supply chain delays. In contrast, additive manufacturing deposits metal layer by layer, using widely available welding wire as a feedstock and minimizing waste to about 10%.

The mold was installed on a Wabash MPI 150-ton hydraulic press at the University of Tennessee, Knoxville, Fibers and Composites Manufacturing Facility. Credit: University of Tennessee, Knoxville

The mold was installed on a Wabash MPI 150-ton hydraulic press at the University of Tennessee, Knoxville, Fibers and Composites Manufacturing Facility. Credit: University of Tennessee, Knoxville

Additive manufacturing also allows engineers to produce more complex mold geometries, such as internal heating channels, that would be difficult to achieve usingconventional machining.

“The more complex the shape, the more valuable additive manufacturing becomes,” Nycz said.

The research team partnered with Collaborative Composites Solutions, or CCS, operator of IACMI–The Composites Institute, to put the concept to the test. They chose to 3D print a large battery enclosure mold, complete with intricate internal features.

Using a gas metal arc welding, or GMAW, additive manufacturing process at Lincoln Electric Additive Solutions, two near-net-shape dies were printed from stainless steel ER410 wire. The GMAW process uses an electric arc to melt a consumable wire electrode to build up metal layers and create complex components while using a protective shielding gas to prevent contamination. The team applied a specialized toolpath strategy for weight reduction while maintaining strength.

Subsequent analysis confirmed the lightweighted mold met structural performance requirements, validating the feasibility of additive manufacturing for high-performance production tooling.

The lower mold, on the left, and the upper mold are shown fully assembled.

The lower mold, on the left, and the upper mold are shown fully assembled. Credit: IACMI

Subsequent analysis confirmed the lightweighted mold met structural performance requirements, validating the feasibility of additive manufacturing for high-performance production tooling.

The project was funded by DOE’s Advanced Materials and Manufacturing Technologies Office, or AMMTO. Additional researchers who contributed to this project include John Unser from Composite Applications Group, Peter Wang from ORNL, and Jason Flamm and Jonathan Paul from Lincoln Electric Additive Solutions.

The MDF, supported by AMMTO, is a nationwide consortium of collaborators working with ORNL to innovate, inspire and catalyze the transformation of U.S. manufacturing.

UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Original Source

Chinmay Saraf
  • Website

Technical Writer, AM Chronicle Chinmay Saraf is a scientific writer living in Indore, India. His academic background is in mechanical engineering, and he has substantial experience in fused deposition-based additive manufacturing. Chinmay possesses an M.Tech. in computer-aided design and computer-aided manufacturing and is enthusiastic about 3D printing, product development, material science, and sustainability. He also has a deep interest in "Frugal Designs" to improve the present technical systems.

LATEST FROM AM
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read
Novel Magnetic 3D-Printed Pen News

Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

June 3, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75