Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    3D Systems Closes Systemic Bio, Founder Continues Mission

    3D Systems Closes Systemic Bio, Founder Continues Mission

    July 26, 2025
    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    July 25, 2025
    The 3D Printed Schools Project is expected to be completed by the end of 2025

    Qatar to Construct World’s Largest 3D-Printed Building

    July 14, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    3D Systems Closes Systemic Bio, Founder Continues Mission

    3D Systems Closes Systemic Bio, Founder Continues Mission

    July 26, 2025
    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    July 25, 2025
    The 3D Printed Schools Project is expected to be completed by the end of 2025

    Qatar to Construct World’s Largest 3D-Printed Building

    July 14, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

UNSW Sydney Researchers develop new 3D printing process that offers novel energy storage design options

News By AM Chronicle EditorSeptember 19, 20224 Mins Read
pe2 3
Researchers at UNSW Sydney used a standard 3D printer to produce an intricate map of Australia made of solid polymer electrolyte which was then tested as an energy storage device. Photos from Dr Nathaniel Corrigan
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

A team from University of New South Wales (UNSW) Sydney has developed a way to 3D print strong, high-conducting solid polymer electrolytes into custom shapes.

More from the News 

UNSW engineers have developed a process to print solid-state polymer electrolytes into any shape desired for use in energy storage.

The research team from the School of Chemical Engineering led by Professor Cyrille Boyer, including Dr Nathaniel Corrigan and Kenny Lee – say the 3D printing process of such material could be particularly useful in future medical devices where small, intricately designed energy storage offers a number of benefits.

Solid-state electrolytes are a key component in solid-state batteries, although traditionally they have suffered from poor performance due to low ionic conductivities or poor mechanical properties.

However, in a paper published in Advanced Materials, the team from UNSW reports their 3D printed solid polymer electrolyte (SPE) offers high conductivity, as well as robust strength.

This means the solid-state electrolytes can potentially be used as the actual structure of a device, creating a range of conceivable design opportunities, particularly for future medical products.

“Nobody has 3D printed solid polymer electrolytes before. Traditionally they have been made using a mould, but previous processes did not offer the ability to control the strength of the material, or to form it into complex shapes,” says Kenny Lee.

“With existing solid-state electrolytes when you increase the mechanical strength of the material, you sacrifice a lot of the conductivity. If you want higher conductivity the material is much less robust. What we have achieved is a simultaneous combination of both, which can be 3D printed into sophisticated geometries.

“This polymer electrolyte has the potential to be a load-bearing energy storage material. Because of its strength, it could be used as the actual structure of small electronics, or in aerospace applications, or in small personal medical devices given our 3D printing process can be very intricate and precise.

“We can create really tiny structures with the kind of systems we’re using. So it has fantastic application in nanotechnology and anywhere you need to design energy storage on a micro-scale level.”

Increased cycling stability

Although the solid polymer electrolyte developed by the UNSW team is regarded as a high-performance material, the researchers say it can be manufactured using inexpensive and commercially available 3D printers, rather than sophisticated engineering equipment.

The SPE described in the paper is composed of nano-scale ion-conducting channels embedded in a rigid crosslinked polymer matrix. It is produced via a process known as polymerization-induced microphase separation (PIMS).

To showcase the versatility of the material, the researchers 3D printed an intricate map of Australia which was then tested as an energy storage device.

3d printer nat corrigan 1
UNSW researcher Dr Nathaniel Corrigan working with a 3D printer in the laboratory. Photo from Dr Corrigan

“One of the other benefits of this SPE in energy storage devices is the fact it increases the cycling stability – that is the number of charging and discharging cycles until its capacity is reduced to a certain amount,” says Dr Corrigan.

“In our paper, we show that this material is very stable and has the ability to charge and discharge over thousands of cycles. After 3000 cycles there was only roughly a 10 per cent drop.”

The researchers say 3D printing also reduces wastage compared to other traditional forms of manufacturing and reduces costs since the same machine can be used to produce a variety of differently shaped materials.

In future, they say product designers could utilise their SPE to create items with a much higher energy storage density.

“Imagine an earpod predominantly made out of this material, which is also acting as the battery. The storage density will be much higher and the power would therefore last longer,” says Professor Boyer.

“We really hope to be able to push forward in terms of commercialisation because we’ve created some really incredible materials and processes.”

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

Original Source

3d printing 3D printing research additive manufacturing Energy energy storage Nanotechnology research Sydney University of New South Wales USA
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
3D Systems Closes Systemic Bio, Founder Continues Mission News

3D Systems Closes Systemic Bio, Founder Continues Mission

July 26, 20252 Mins Read
Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium News

Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

July 25, 20251 Min Read
The 3D Printed Schools Project is expected to be completed by the end of 2025 News

Qatar to Construct World’s Largest 3D-Printed Building

July 14, 20252 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75