Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

University of Michigan Takes on Clip 3d Printing With “single Exposure” Fabrication

News By AM Chronicle Editorial TeamJanuary 15, 20194 Mins Read
University of Michigan
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

[ihc-hide-content ihc_mb_type=”show” ihc_mb_who=”reg” ihc_mb_template=”3″ ]

[vc_row][vc_column][vc_column_text]

Tipped to be 100 times faster than other commercially available technologies, the technique is also capable of rending a 3D object with just a single flash of light rather than layer by layer. As such, UMich researchers are calling the system: “one of the first true 3D printers ever made.”

Taking on Carbon CLIP

UMich’s high speed 3D printing process is a vat polymerization technique based on SLA. Considering the set up of an SLA 3D printer, (with the light source below a vat of resin) one of the limitations of such processes is the resin’s adhesion to the projection window at the base of the vat. As a result, SLA 3D printing is conducted at speeds lower than its potential.

In continuous liquid interface production (CLIP), the method patented by California-based 3D printer provider Carbon, an oxygen permeable projection window is used to create a thin polymerization-free area in the resin at the bottom of the vat. This prevents the resin from curing and sticking to the projection window, enabling Carbon to reach the high production speeds that it’s famous for.

UMich’s method takes an alternative approach. In place of an oxygen membrane, its 3D printer uses a dual light source.[/vc_column_text][vc_column_text]

Inside the UMich high speed 3D printer

The UMichigan 3D printer contains two different colored lights with respectively varied wavelengths – one ultraviolet (UV), and one blue. By using a resin mixture that contains both photoinitiators and inhibitors, these lights can be tuned to start or stop the curing process as required.

In the example given by UMich researchers, blue light is used to selectively initiate solidification, and UV is used to prevent it. This creates the polymerization-free space needed above the projection window.

With this technique, the UMich team has been able to achieve print speeds of approximately 2 m/hour. By further varying the intensity of the light source, the method is also capable of performing “surface topographical patterning in a single exposure/layer with no stage translation.”

Referencing this ability Mark Burns, UMich professor of chemical engineering and biomedical engineering and co-lead of the research, says, “It’s one of the first true 3D printers ever made.”

Broadening opportunities for additive manufacturing in mass production

In comparison to the CLIP oxygen membrane, the combination of lights in the UMich 3D printer allows a much thicker void of material in the vat where polymerization doesn’t occur. This therefore means that stronger, more viscous, materials can be used in the continuous 3D printing process and, as stated in the results of a paper detailing the method:

“By eliminating the need for thin, O2-permeable projection windows, this process has the potential to be scaled for rapid production of very large objects.”

In addition, the authors believe that method could unlock further potential for additive manufacturing in mass production. Timothy Scott, UMich associate professor of chemical engineering and co-lead of the project, explains, “Using conventional approaches, that’s not really attainable unless you have hundreds of machines.”[/vc_column_text][vc_video link=”https://youtu.be/AUNWzHKRNoA”][vc_column_text]

Hitting the market

A full discussion of the new UMich 3D printing method has been published online in Science Advances under the title “Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning.” Its authorship is credited to six researchers in total, namely Martin P. de Beer, Harry L. van der Laan, Megan A. Cole, Riley J. Whelan, Mark A. Burns, and Timothy F. Scott.

Of the researchers listed Scott, van der Laan and Cole have all been named as inventors on a patent relating to the technology filed by UMich on 20 February 2018. According to the university, there are a further two patent applications in place to protect the technology, and from here it seems that the team plans to commercialize the technology as Scott is looking to set up a startup company.

Source: www.3dprintingindustry.com

AM Chronicle
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

3d printing 3d printing industry Carbon CLIP I3DPn Indian 3D Printing Network SLA 3D Printing UMich UMichigan 3D printer University of Michigan
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75