[ihc-hide-content ihc_mb_type=”show” ihc_mb_who=”reg” ihc_mb_template=”3″ ]
[vc_row][vc_column][vc_column_text]Credits: www.3dprintingprogress.com
Stryker’s Spine division has announced the publication of a pre-clinical animal study comparing the performance of spinal implants made from a variety of materials, which illustrated the bone in-growth and biological fixation capabilities of its 3D-printed Tritanium cages.
The results demonstrated that the Tritanium cages exhibited significantly greater total bone volume within the graft window at both 8 and 16 weeks compared to the PEEK cages (p<0.01).1 Tritanium cages also were the only cages that showed a decrease in range of motion and an increase in stiffness across all three loading directions (axial rotation, flexion-extension, and lateral bending) between the 8-week and 16-week time points (p-value ≤0.01). 1[/vc_column_text][/vc_column][/vc_row]
[/ihc-hide-content]
The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.