Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Complex shapes 3D-printed using the new method. (Elham Davoodi and Wei Gao)

    Scientists 3D Print Materials Deep Inside the Body Using Ultrasound called Deep Tissue in Vivo Sound Printing (DISP)

    May 19, 2025
    person wearing smart watch up close

    WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

    May 15, 2025
    Credits: MX3D

    MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

    May 15, 2025
    Credit: University of Glasgow

    University of Glasgow lab transforms 3D printing for space manufacturing

    May 15, 2025
    Source: CEAD

    CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

    May 19, 2025
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
    Blue White Simple Financial Tips Blog Banner 19

    How 4 Industries Are Transforming with Polymer 3D Printing

    April 25, 2025
    Raman 2 Engine, Credits: Skyroot

    India’s Skyroot Aerospace Tests 3D-Printed Vacuum Engine for Spaceflight

    April 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Image credit: Philips

    Philips Unveils 3D-Printable Components for Product Repair, Promoting Sustainability

    May 19, 2025
    Source: CEAD

    CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

    May 19, 2025
    Complex shapes 3D-printed using the new method. (Elham Davoodi and Wei Gao)

    Scientists 3D Print Materials Deep Inside the Body Using Ultrasound called Deep Tissue in Vivo Sound Printing (DISP)

    May 19, 2025
    person wearing smart watch up close

    WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

    May 15, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Stratasys Technology Advances Anatomical Model Production And Bicycle Saddle Design

News By AM Chronicle Editorial TeamDecember 6, 20216 Mins Read
DAC in computer vs3 760x507 1
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Industrial 3D printer manufacturer Stratasys has introduced a new software module, the Digital Anatomy Creator, for its Digital Anatomy 3D printers in order to enhance the production of 3D printed anatomic models.

Alongside the new software module, the company has partnered with third-party software vendors Synopsys’ Simpleware ScanIP Medical and Materialise’ Mimics inPrint to certify its Digital Anatomy and J5 MediJet printers to be included in FDA 510(k) cleared medical modeling workflows.

Elsewhere, Stratasys’ recently launched H350 3D printer has also been leveraged by German design firm DQBD to produce fully personalized cycling saddles that offer increased comfort and performance efficiency over those produced via traditional methods, while slashing lead times and production costs.

Advancing personalized healthcare

Stratasys’ Digital Anatomy 3D printer was originally launched in 2016 for the production of anatomical models for the medical sector. Since then, the printer has been validated by global color authority Pantone and received medical upgrades, including the capability to create models that mimic human bone.

The company launched its J5 MediJet 3D printer in June this year, designed specifically for medical applications such as patient-specific anatomical models, surgical guides, and medical tooling. The full-color system leverages Stratasys’ PolyJet technology and is compatible with a wide array of sterilizable and biocompatible 3D printing resins.

Image Medical J5 MediJet 1536x1120 1
Multi-color medical models 3D printed on the J5 MediJet. Photo via Stratasys.

The Digital Anatomy Creator module

Now, Stratasys is advancing the capability of its medical machines with a new software module, the Digital Anatomy Creator, which allows users to produce patient-specific anatomic models that are a direct replica of a patient’s anatomy.

Through the module, users can easily manipulate material formations and customize the internal structures of their prints thanks to additional options and controls. This capability allows users to calibrate their printers’ materials to meet the specific requirements of each anatomic model, in order to customize and produce ultra-realistic models that behave and respond like the real thing.

The Digital Anatomy Creator also enables users to create, replicate, and share designs across a community dedicated to patient-specific anatomies for a wide range of applications, ranging from diagnosis to patient education.

“The Digital Anatomy Creator is the missing link between the patient, the printer and the final printed 3D anatomic model,” said Seth Friedman, Manager of Innovation, Imaging and Simulation Modeling for Seattle Children’s Hospital. “This new software has allowed us to personalize our anatomic models to a mind-blowing level – we can now provide a level of care that is truly personalized to each of our patients, which is really important when working with children and their caregivers.”

Alongside the introduction of the new module, Stratasys has certified its Digital Anatomy and J5 MediJet 3D printers to be included in FDA 510(k) cleared medical modeling workflows, through partnerships with third-party software vendors. Synopsys’ Simpleware ScanIP Medical and Materialise’s Mimics inPrint software will enable Stratasys’ customers to access workflows for diagnostic anatomic modeling and point-of-care 3D printing.

“We continue our journey towards accessible, accurate, and realistic 3D medical modeling by deepening our structural pathology flexibility with the introduction of the Digital Anatomy Creator module and by validating our digital workflow with third-party segmentation software with FDA 510(k) clearance,” said Osnat Philipp, Vice President, Healthcare, for Stratasys.

“Our Solutions Allow Providers To Deliver Best-In-Class Healthcare That Leads To Better Outcomes And Establishes A New Level Of Care.”

spine model
Anatomic model of a spine printed on the Stratasys J750 Digital Anatomy Printer. Photo via Business Wire.

Optimizing cycling saddle production

Moving away from the medical sector now, and Stratasys has revealed how its recently launched H350 3D printer has been leveraged to produce customized cycling saddles at scale.

Unveiled in April, the H350 is powered by Stratasys’ Selective Absorption Fusion (SAF) technology, based on a high-speed sintering process originally developed by Xaar, which Stratasys acquired in October.

The H350 has been deployed by DQBD to produce fully personalized bicycle saddles that reportedly deliver a higher level of comfort and performance efficiency compared to regular saddles. The design firm is 3D printing a number of the saddle’s load-bearing parts at scale using the machine, and says Stratasys’ SAF technology has so far enabled it to save up to £22,000 while slashing lead times from six months to just 10 days compared to injection molding processes.

“We have always planned for additive manufacturing to play a pivotal role in the creation of SAM – our cycling saddle,” said Sebastian Hess, CEO at DQBD. “In fact, we designed the saddle with additive manufacturing in mind. As well as delivering consistently accurate, production-grade parts at volume quickly and affordably, the technology offers a unique opportunity to personalize products in a way that cannot be replicated with traditional methods.”

IMG 2042 760x507 1
Stratasys’ H350 3D printer provides the design flexibility and production quality needed to produce a completely customized cycling saddle at scale. Photo via Stratasys.

The SAM saddle is made up of a semi-rigid, personalized PA11 3D printed spine and a 3D thermoformed seat pad. DQBD uses software mapping of pressure points and weight distribution to match the geometry of the saddle with the rider’s body and riding position, while the composition of rigid and flexible zones within the saddle’s 3D printed spine offers support and adaptation where it is needed.

According to DQBD, the combination of rigid and flexible zones will offer a higher level of comfort to the rider, while reducing fatigue. The entire saddle assembly is also glue-less, meaning the components can be easily separated and reintroduced into production at the end of the saddle’s lifetime.

“We are definitely seeing a trend in businesses’ readiness for volume production of end-use parts,” said Yann Rageul, Head of Manufacturing Business Unit EMEA & Asia at Stratasys. “DQBD is showcasing how the H350 and its SAF technology can not only optimize the entire production process with valuable time and cost savings, but also shows the deployment of additive manufacturing for truly unique and advanced designs – ready for production at scale.

“We Are Proud To See That The Sam Saddle Design Dqbd Created Shows The Advancements Of Additive Manufacturing Within The Product Development Cycle – As The Product Concept Was Designed Around Additive Manufacturing From The Start.”

IMG 2113 1536x1024 1
Consisting of a semi-rigid, personalized 3D printed spine and a 3D thermoformed seat pad, the saddle was designed with additive manufacturing in mind. Photo via Stratasys.

 

Original Source

DQBD J5 MEDIJET J750 DIGITAL ANATOMY Materialise MATERIALISE MAGICS INPRINT OSNAT PHILIPP Pantone Stratasys STRATASYS DIGITAL ANATOMY STRATASYS DIGITAL ANATOMY CREATOR STRATASYS H350 STRATASYS POLYJET STRATASYS SAF
AM Chronicle Editor

LATEST FROM AM
Image credit: Philips Uncategorized

Philips Unveils 3D-Printable Components for Product Repair, Promoting Sustainability

May 19, 20254 Mins Read
Source: CEAD Insights

CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

May 19, 20252 Mins Read
Complex shapes 3D-printed using the new method. (Elham Davoodi and Wei Gao) News

Scientists 3D Print Materials Deep Inside the Body Using Ultrasound called Deep Tissue in Vivo Sound Printing (DISP)

May 19, 20254 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75