Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Scientists develop method of 3D printing glass objects with “unique optical, electrical and chemical properties”

News By AM Chronicle EditorJune 14, 20224 Mins Read
Screenshot 2022 06 13 at 11.20.19 1024x715 1
The MIT scientists’ low-temperature glass 3D printing workflow. Image via the MIT Lincoln Laboratory.
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Researchers at the US Department of Defense-backed MIT Lincoln Laboratory have come up with a novel low-temperature approach to 3D printing glass objects.

More from the News 

Unlike conventional glass 3D printing and post-processing, which involves exposing parts to temperatures of 1,000 °C or more, the scientists’ involves layering a custom, highly-filled ink, that’s curable at 250°C. Due to the accessibility of their material’s ingredients and the simplicity of their process, the team believe it could “facilitate the widespread production of glass objects,” with unique characteristics.

“We have shown a modular system that can be tuned to print a wide variety of inorganic glasses with embedded functional nanomaterials (dielectric, metallic and optical),” explain the scientists in their paper. “We envision this versatile materials platform, when combined with multi-material additive manufacturing, will enable the fabrication of a wide variety of robust microsystems.”

Glass 3D printing’s thermal problem? 

Though glass 3D printing remains at a relatively early stage of development, the technology is beginning to show potential as a means of realizing objects with more complex geometries than those possible via traditional glass processing.

Using multi-material techniques, for instance, researchers are increasingly able to create parts like optical lenses and microfluidic devices with higher mechanical strength and graded refractive indices. Given the sub-millimeter features it’s now possible to achieve using 3D printing, the technology’s also showing potential as a means of producing glass objects capable of enhancing devices’ functionalities.

That being said, such parts, when created via stereolithography, two-photon lithography or direct ink writing (DIW), are subjected to high temperatures, whether this be in deposition or during debinding. These steps tend to yield stable glass structures, but also require the use of specialized refractory gear, and they can be incompatible with thermally-sensitive materials, limiting users’ choice of feedstock.

“Emerging techniques for additively generating inorganic structures have the potential to disrupt the ceramic and glass industries,” say the team in their paper. “Glass offers advantages over other additive manufacturing materials, such as improved biocompatibility and enhanced thermal stability. However, current methods for producing glass require elevated temperatures to produce a completely inorganic part.”

Screenshot 2022 06 13 at 11.19.49 1024x633 1
The highly-filled nanocomposite behind the scientists’ approach. Image via the MIT Lincoln Laboratory.

 

The MIT low-temp alternative  

Central to the researchers’ alternative, is a custom nano-composite they’ve developed. Composed of functional nanoparticles embedded in a sodium silicate solution, as well as silver particles in its conductive iteration, the ink is printable at much lower temperatures than normal. Once formulated, this material was put into action by the team via a DIW-equipped 3-axis Aerotech gantry system.

After creating some basic shapes and structures, the scientists found that mounting barrels of structural and silver inks onto the machine’s two independent z-axes, enabled the creation of capacitors and resistors. These parts, following curing in a mineral oil bath, showed a high level of stability, though the MIT team admit that they didn’t quite have the same optical clarity as sintered parts.

Through later imaging, the researchers also found they’d been able to achieve different trace lengths with their prototype resistors, and tweak the permittivity levels of their material to change the capacity of capacitors produced, with those made from barium, strontium and titanium oxide having the highest power factor.

According to the team, their experiments show that their process can be tailored to produce a “broad range of electronic materials and integrated microsystems.” Moving forwards, the scientists plan to focus on improving the optical clarity of parts produced, and providing them with graded properties, as a way of further broadening their potential applications.

“The major advantage of this technique lies in its simplicity,” conclude the team in their paper. “We believe this silicate-based strategy will facilitate the production of custom microfluidic chemical reactors with much wider chemical and thermal compatibilities than are currently available. Furthermore, we predict these materials will allow for the creation of novel, high power radio frequency devices.”

MITLL 265456 2C 0
MIT’s Lincoln Laboratory. Photo via MIT.

 

Putting glass 3D printing into practise 

Glass 3D printing may not have been commercialized just yet, but the technology continues to find new applications, many of which have focused on photonics. As one of the leading start-ups working in this emerging field, Glassomer has come up with a 3D printing silica nanocomposite of its own, which has since been 3D printed at room temperature into glass parts, the thickness of a human hair.

The researchers’ findings are detailed in their paper titled “Low Temperature Additive Manufacturing of Glass,” co-authored by Bradley Duncan, Devon Beck, Paul Miller, Ryan Benz and Melissa Smith.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

For more information and case studies on metal additive manufacturing register for metal additive manufacturing symposium : https://amchronicle.com/metal-additive-manufacturing/

Original Source

3d printing 3d printing glass 3D printing research additive manufacturing Aerotech glass MIT Lincoln Laboratory US Department of Defense USA
AM Chronicle Editor

LATEST FROM AM
HBD Advances in Metal 3D Printing for Customized Orthopedic Implants Insights

HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

June 13, 20253 Mins Read
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75