Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
    Flames stream from New Frontier Aerospace’s Mjölnir rocket engine during a hot-fire test. (NFA Photo)

    New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

    June 24, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International

    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Researchers unveil new AI-driven method for improving additive manufacturing

News By AM Chronicle EditorMarch 11, 20234 Mins Read
shutterstock 1379388230 16x9 1
The metal additive manufacturing process can be used to quickly make parts with complex geometries. (Image by Shutterstock.)
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Scientists developed a new approach for detecting defects in metal parts produced by additive manufacturing. Using X-rays and machine learning to advance the production of printed parts

Many industries rely on metal additive manufacturing to rapidly build parts and components. Rocket engine nozzles, pistons for high performance cars, and custom orthopedic implants are all made using additive manufacturing, a process that involves building parts layer-by-layer using a 3D printer.

Additive manufacturing allows users to build complex parts quickly, but structural defects that form during the building process is one of the reasons that have prevented this approach from being widely adopted. Researchers from the U.S. Department of Energy’s (DOE) Argonne National Laboratory have developed a new method for detecting and predicting defects in 3D printed materials, which could transform the additive manufacturing process.

“The APS offered the 100% accurate ground truth that allowed us to achieve perfect prediction of pore generation with our model.”
— Tao Sun, University of Virginia

The method was recently published in the journal Science by a research team led by Argonne and the University of Virginia (UVA). The scientists used various imaging and machine learning techniques to detect and predict the formation of pores in 3D printed metals in real time with near-perfect accuracy.

The metal samples used in the study were created using a process called laser powder bed fusion, in which metal powder is heated by a laser and then melted into the proper shape. But this approach often leads to the formation of pores that can compromise a part’s performance.

Many additive manufacturing machines have thermal imaging sensors that monitor the build process, but these can miss the formation of pores because they only image the surface of the parts being constructed. The only way to directly detect pores inside dense, metal parts is by using intense X-ray beams, such as those generated by the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne.

“Our X-ray beams are so intense that we can image more than a million frames per second,” said Samuel Clark, an assistant physicist at Argonne. These images allowed the researchers to see pore generation in real time. By correlating X-ray and thermal images, the scientists discovered that pores formed within a sample cause distinct thermal signatures at the surface that thermal cameras can detect.

Then, the researchers trained a machine learning model to predict the formation of pores within 3D metals using only thermal images. They validated the model using data from the X-ray images, which they knew accurately reflected the generation of pores. Then, they tested the model’s ability to detect thermal signals and predict pore generation in unlabeled samples.

“The APS offered the 100% accurate ground truth that allowed us to achieve perfect prediction of pore generation with our model,” said Tao Sun, an associate professor at UVA.

Many additive manufacturing machines on the market already have sensors, but they aren’t nearly as accurate as the method the researchers discovered. ​“Our approach can readily be implemented in commercial systems,” said Kamel Fezzaa, a physicist at Argonne. ​“With only a thermal camera, the machines should be able to detect when and where pores are generated during the printing process and adjust their parameters accordingly.”

For example, if a major defect is detected by a machine early in the manufacturing process, the machine can automatically stop building a part. Even if the build process isn’t halted, the new approach can provide information on where pore defects might be within the part, saving users time during inspection.

“If you have a log file that tells you these four locations could have defects, then you’re just going to check out these four locations instead of looking at the entire part,” said Sun.

The ultimate goal is to create a system that not only detects defects, but repairs them during the manufacturing process. Moving forward, the researchers will study sensors that can detect other types of defects that occur during the additive manufacturing process. ​“In the end, we want to develop a comprehensive system that can tell you not only where you possibly have defects, but also what exactly the defect is and how it might be fixed,” Sun said.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

Original Source

3d printing 3D printing research additive manufacturing AI Metal Additive Manufacturing University of Virginia
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet. News

Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

June 28, 20255 Mins Read
Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International Uncategorized

Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

June 28, 20252 Mins Read
Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt News

Freemelt receives order for Freemelt ONE from a German industrial company

June 25, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75