Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
    Flames stream from New Frontier Aerospace’s Mjölnir rocket engine during a hot-fire test. (NFA Photo)

    New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

    June 24, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International

    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Researchers developing ‘revolutionary’ multi-material for light-based 3D printing

News By AM Chronicle EditorOctober 19, 20233 Mins Read
98XB
This illustration shows a single resin producing two materials with different properties during light-based 3D printing. Larger illustration. Figure contributed by Adarsh Krishnamurthy.
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

The U.S. National Science Foundation (NSF) is looking for materials that “revolutionize and engineer our future.” Researchers at Iowa State University and the University of California, Santa Barbara think they can do just that by fundamentally changing Digital Light Processing – a type of 3D printing that users light rather than heat to quickly cure and harden liquid resin into plastic layers – to enable multi-material printing.

“We want to produce two material properties with the same resin,” said Adarsh Krishnamurthy, an associate professor of mechanical engineering and leader of the project at Iowa State. “That’s revolutionary in terms of materials for 3D printing.”

The researchers are using their expertise in materials chemistry, computational science, machine learning and materials characterization to find resins that, when exposed to different wavelengths of light, will solidify with different properties.

So, with one material, Digital Light Processing 3D printers could create products that are rigid in some places and flexible in others.

New materials for national needs

The project is one of 37 that NSF announced in September as part of a four-year, $72.5 million investment to “create novel materials to address grand societal challenges and develop the scientific and engineering workforce of tomorrow.” The effort is part of the federal, multi-agency Materials Genome Initiative that’s focused on quickly advancing materials invention and use.

“By integrating numerous research disciplines across NSF as well as federal and industrial partnerships, this program truly revolutionizes the design, discovery and development of new materials for addressing urgent national needs,” said Sethuraman Panchanathan, director of the NSF.

The program awarded Iowa State researchers $800,000 to use artificial intelligence and machine learning algorithms to help develop new resins which can be printed with different properties. Krishnamurthy said the Iowa State team’s experience with machine learning tools will help the researchers evaluate options and quickly identify potential materials.

The program also awarded UCSB researchers $1.1 million for their share of the project. Led by Michael Chabinyc, a professor of materials, the UCSB researchers will focus their work on polymer chemistry.

(See sidebar for a full roster of researchers from Iowa State and UCSB.)

Krishnamurthy said the Iowa State and UCSB researchers will focus their efforts on building special biomedical platforms with structured surfaces of varying stiffnesses that can promote and direct the growth of cell cultures.

Currently, such cultures are grown on hard glass or a soft silicon polymer.

“But that’s not how the body is,” Krishnamurthy said. “The body has both – hard bone and soft tissue. The different stiffnesses promote better cell growth.”

Computing material improvements

In addition to printing and testing actual materials, the researchers will develop a “digital twin” of the system. They can use this to simulate and predict how different resins will respond to a spectrum of light wavelengths and exposures.

Machine learning tools will also save the researchers tedious, time-consuming lab work by trimming the list of potential resins suitable for study and development for multi-material 3D printing.

In addition, the researchers will use a machine learning technique called reinforcement learning to make sure advances in experiments or theories lead to overall advancements of multi-material , light-based 3D printing.

All that computational science can help the Iowa State-UCSB team advance the Materials Genome Initiative’s goal of “discovering, manufacturing, and deploying advanced materials twice as fast and at a fraction of the cost compared to traditional methods.”

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

3d printing additive manufacturing Digital Light Processing Multi-material printing National Science Foundation USA
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet. News

Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

June 28, 20255 Mins Read
Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International Uncategorized

Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

June 28, 20252 Mins Read
Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt News

Freemelt receives order for Freemelt ONE from a German industrial company

June 25, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75