Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    person wearing smart watch up close

    WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

    May 15, 2025
    Credits: MX3D

    MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

    May 15, 2025
    Credit: University of Glasgow

    University of Glasgow lab transforms 3D printing for space manufacturing

    May 15, 2025
    Ryan Watkins (center) receiving the Advanced Finishing award from Bonnie Meyer (left) and Corey Wardrop.

    Additive Manufacturing Users Group Names Technical Competition Winners

    May 3, 2025
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
    Blue White Simple Financial Tips Blog Banner 19

    How 4 Industries Are Transforming with Polymer 3D Printing

    April 25, 2025
    Raman 2 Engine, Credits: Skyroot

    India’s Skyroot Aerospace Tests 3D-Printed Vacuum Engine for Spaceflight

    April 21, 2025
    Customized Medicine

    How 3D Printing is Revolutionizing Customized Medicine

    April 17, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    person wearing smart watch up close

    WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

    May 15, 2025
    Credits: MX3D

    MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

    May 15, 2025
    Credit: University of Glasgow

    University of Glasgow lab transforms 3D printing for space manufacturing

    May 15, 2025
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Researchers at Harvard University develop Low-cost wearables manufactured by hybrid 3D printing

News By AM Chronicle EditorAugust 30, 20227 Mins Read
hybrid 3D printing device 3 e1661832442266
A complete hybrid 3D-printed device flexes and conforms to the body’s shape. Credit: Alex Valentine, Lori K. Sanders, and Jennifer Lewis / Harvard University
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

New method developed by researchers Wyss Institute at Harvard University of  combines precision printing of stretchable conductive inks with pick-and-place of electronic components to make flexible, wearable sensors. The method used in the study is popularly known as hybrid 3D printing. 

More from the News 

Human skin must flex and stretch to accommodate the body’s every move. Anything worn tight on the body must also be able to flex around muscles and joints, which helps explain why synthetic fabrics like spandex are popular in activewear. Wearable electronic devices that aim to track and measure the body’s movements must possess similar properties, yet integrating rigid electrical components on or within skin-mimicking matrix materials has proven to be challenging. Such components cannot stretch and dissipate forces like soft materials can, and this mismatch in flexibility concentrates stress at the junction between the hard and soft elements, frequently causing wearable devices to fail.

A new hybrid 3D printing technique developed at the Wyss Institute at Harvard University, Harvard’s John A. Paulson School of Engineering and Applied Sciences, and the Air Force Research Laboratory combines stretchable conductive inks and electronic components into flexible, durable wearable devices that move with the body and offer increased programmability. This research was supported by the Wyss Institute, Harvard SEAS, AFRL and GETTYLAB. Credit: Wyss Institute at Harvard University.

Now, a collaboration between the lab of Jennifer Lewis, Sc.D. at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and J. Daniel Berrigan, Ph.D. and Michael Durstock, Ph.D. at the US Air Force Research Laboratory has created a new additive manufacturing technique for soft electronics, called hybrid 3D printing, that integrates soft, electrically conductive inks and matrix materials with rigid electronic components into a single, stretchable device. “With this technique, we can print the electronic sensor directly onto the material, digitally pick-and-place electronic components, and print the conductive interconnects that complete the electronic circuitry required to ‘read’ the sensor’s data signal in one fell swoop,” says first author Alex Valentine, who was a Staff Engineer at the Wyss Institute when the study was completed and is currently a medical student at the Boston University School of Medicine. The study is published in Advanced Materials.

The stretchable conductive ink is made of thermoplastic polyurethane (TPU), a flexible plastic that is mixed with silver flakes. Both pure TPU and silver-TPU inks are printed to create the devices’ underlying soft substrate and conductive electrodes, respectively. “Because both the substrate and the electrodes contain TPU, when they are co-printed layer-by-layer they strongly adhere to one another prior to drying,” explains Valentine. “After the solvent evaporates, both of the inks solidify, forming an integrated system that is both flexible and stretchable.”

The printing process causes the silver flakes in the conductive ink to align themselves along the printing direction so their flat, plate-like sides layer on top of one another, like overlapping leaves on a forest floor. This structural alignment improves their ability to conduct electricity along the printed electrodes. “Because the ink and substrate are 3D-printed, we have complete control over where the conductive features are patterned, and can design circuits to create soft electronic devices of nearly every size and shape,” says Will Boley, Ph.D., a postdoctoral researcher in the Lewis lab at SEAS and co-author of the paper.

Soft sensors composed of conductive materials that exhibit changes in their electrical conductivity when stretched (which is how they detect movement) are coupled with a programmable microcontroller chip to process those data, as well as a readout device that communicates the data in a form humans can understand. To achieve this, the researchers combined the printed soft sensors with a digital “pick-and-place process” that applies a modest vacuum through an empty printing nozzle (through which ink is normally dispensed) to pick up electronic components and place them onto the substrate surface in a specific, programmable manner.

Because these surface-mounted electrical components (e.g., LEDs, resistors, micro-chips) are by nature hard and rigid, the team took advantage of TPU’s adhesive properties by applying a dot of TPU ink beneath each component prior to attaching it to the underlying soft TPU substrate. Once dried, the TPU dots serve to anchor these rigid components and distribute stress throughout the entire matrix, allowing the fully assembled devices to be stretched up to 30% while still maintaining function. A device composed of 12 LEDs attached to a flat TPU sheet created using this method was able to be repeatedly bent into a cylindrical shape without reduction in the intensity of the LEDs’ light or mechanical failure of the device.

As a simple proof-of-concept, the team created two soft electronic devices to demonstrate the full capabilities of this additive manufacturing technique. A strain sensor was fabricated by printing TPU and silver-TPU-ink electrodes onto a textile base and applying a microcontroller chip and readout LEDs via the pick-and-place method, resulting in a wearable sleeve-like device that indicates how much the wearer’s arm is bending through successive lighting-up of the LEDs. The second device, a pressure sensor in the shape of a person’s left footprint, was created by printing alternating layers of conductive silver-TPU electrodes and insulating TPU to form electrical capacitors on a soft TPU substrate, whose deformation patterns are processed by a manual electrical readout system to make a visual “heat map” image of the foot when a person steps on the sensor.

We believe that this is an important first step toward making customizable, wearable electronics that are lower-cost and mechanically robust.

JENNIFER LEWIS

While the team is continuing to optimize both their materials and their methods, hybrid 3D printing is broadly applicable to manufacturing myriad electronic devices. “We have both broadened the palette of printable electronic materials and expanded our programmable, multi-material printing platform to enable digital ‘pick-and-place’ of electronic components. We believe that this is an important first step toward making customizable, wearable electronics that are lower-cost and mechanically robust,” says Lewis, who is the corresponding author of the paper, a Core Faculty member at the Wyss Institute, and the Hansjörg Wyss Professor of Biologically Inspired Engineering at SEAS.

“This new method is a great example of the type of cross-disciplinary collaborative work that distinguishes the Wyss Institute from many other research labs,” says Wyss Founding Director Don Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, as well as a Professor of Bioengineering at Harvard SEAS. “By combining the physical precision of 3D printing with the digital programmability of electronic components, we are literally building the future.”

Additional authors of the study include Travis Busbee, a graduate student in the Lewis lab and co-founder of Voxel8; Jordan Raney, Ph.D., former postdoc in the Lewis lab and current Assistant Professor in the School of Engineering and Applied Sciences at the University of Pennsylvania; Alex Chortos, Ph.D., and a postdoc in the Lewis lab; Arda Kotikian, a Graduate Research Fellow in the Lewis lab.

This research was supported by the Air Force Research Laboratory Materials and Manufacturing Directorate and UES, the Vannevar Bush Faculty Fellowship Program under the Office of Naval Research, a generous donation from the GETTYLAB, and the Wyss Institute at Harvard University.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

Original Source

3d printing additive manufacturing Electronics flexible electronics Harvard University hybrid 3D printing Lifestyle USA Wearables Wyss Institute at Harvard University
AM Chronicle Editor

LATEST FROM AM
person wearing smart watch up close News

WSU Researchers Unveil 3D Printing Method for Enhanced Comfort and Durability in Smart Wearables

May 15, 20255 Mins Read
Credits: MX3D News

MX3D Secures €7 Million to Fuel Global Expansion of Robotic Metal 3D Printing

May 15, 20254 Mins Read
Credit: University of Glasgow News

University of Glasgow lab transforms 3D printing for space manufacturing

May 15, 20254 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75