Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Norwegian Researchers Compare 3D Printing Results: Factory Setting vs. Onsite Military Container

News By AM Chronicle EditorDecember 5, 20184 Mins Read
shutterstock 1039589176...
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Credit: www.3dprint.com

3D printing in a comfortable and familiar setting can be challenging enough, depending on the project. But what about fabricating objects in remote locations—while sometimes under duress? Norwegian researchers related to the Norwegian Defence Research Establishment (FFI) explored this question, publishing results recently in ‘Characterization of in-field additively manufactured polymer composites – hot and dusty environment.’ The paper, authored by Tom Thorvaldsen, Torbjørn Olsen, and Bernt Brønmo Johnsen, explores the use of 3D printing in differing environments, whether more controlled or at a non-conventional site.

Contractors involved in the comparative research include Fundación Prodintec (Spain) and MBDA(France), with the main goal aimed at demonstrating how the military can 3D print spare parts and objects while in the field. Prodintec produced eight specimens for this project: four were produced at company facilities last May, while the other four were printed in the field during a military training course in Spain in June. Surprisingly, the researchers noticed no discernible differences between the samples created in the factory and the ones that were created in the field in a portable setting.

“It should, however, be noted that the produced specimens are not fully dense; the specimens have a cell-like internal structure. As the real cross-sectional area of the fracture surface is challenging to measure, the crosssectional area of a dense specimen is applied in the calculations,” stated the researchers. “Again, as a result of this, the obtained parameter values included in the study for the specimen sets are much lower than what is reported by the material manufacturer and in other studies. Still, a comparison of printing under different conditions and locations, i.e. factory versus in-field, is relevant, and the overall conclusion is still valid.”

container

The EDA AM container is being put on a transport aircraft at the airbase in
Zaragoza, Spain, and then airborne, to demonstrate the capabilities of in-field
additive manufacturing. EDA ©. Source: European Defence Agency project on
Additive Manufacturing (16.EDA.OP.144) lead by Fundación Prodintec.

 

container 2

The means for on-site military 3D printing is in an air-conditioned container that can be transported anywhere around the world (for this training exercise, it was transported by plane, as seen in the above image). Printing conditions at a military site can be affected though by the following:

  • Temperature
  • Humidity
  • Sand particles
  • Dust particles

“Such factors may influence the quality and properties of the printed objects, which will influence on the object’s performance and area of use,” stated the researchers.

A Markforged Mark Two printer was used for all of the samples, with the same 3D printing settings applied whether operating personnel were working in a factory or on-site using the container. Tensile testing was performed, according to the researchers, using the ISO 527-2 standard [3] on a Zwick BZ2.5/TN1S material testing machine at FFI.

“Most of the test specimens experienced a linear stress-strain phase before the material started to yield and finally broke,” stated the researchers. “Some of the test specimens broke before yield occurred in the material. Moreover, some of the specimens experienced an unrealistic large elongation, as the specimen started failing, but not broke completely.”

The 3D printed specimens were not made of a dense material, but rather were comprised of an ‘internal, cell-like structure’ varying between the specimens:

“Ideally, one should have all specimens made of dense material. Still, it is relevant to compare the printing at the two different locations, to see the effect of factory/workshop versus in-field printing conditions. The same printer input file should produce the same specimen geometry, including the internal structure.”

“The only variation is the environmental conditions during printing,” concluded the researchers, who also pointed out that there were no changes in mechanical properties in either environment.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Characterization of in-field additively manufactured polymer composites – hot and dusty environment’]

overview

Overview of test specimen types.

three

Fracture surface/internal structure of the specimen types. a) Fracture surface of test
specimen EDA-OB-1-6, b) cross-section of test specimen EDA-OB-1-5 , c) side
view of fracture of EDA-OB-2-2, d) cross-section of test specimen EDA-OB-2-3, e)
fracture surface of EDA-OB-3-5, f) cross-section of test specimen EDA-OB-3-1,
g) fracture surface of test specimen EDA-OB-4-6, h) cross-section of test specimen
EDA-OB-4-4.

e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3d printing additive manufacturing I3DPn Indian 3D Printing Network Norwegian Defence Research Establishment Norwegian researchers
AM Chronicle Editor

LATEST FROM AM
HBD Advances in Metal 3D Printing for Customized Orthopedic Implants Insights

HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

June 13, 20253 Mins Read
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75