Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

New 3D Printing Alloy by NASA built to Withstand Extreme Conditions

News By AM Chronicle EditorApril 20, 20224 Mins Read
New 3D Printing Alloy by Nasa built to Withstand Extreme Conditions
This turbine engine combustor (fuel-air mixer) was 3D-printed at NASA Glenn and is one example of a challenging component that can benefit from applying the new GRX-810 alloys. Credits: NASA
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

NASA innovators recently developed a new metal alloy using a 3D printing process that dramatically improves the strength and durability of the components and parts used in aviation and space exploration, resulting in better and longer-lasting performance.

More from the News 

NASA Alloy GRX-810, an oxide dispersion strengthened (ODS) alloy, can endure temperatures over 2,000 degrees Fahrenheit, is more malleable, and can survive more than 1,000 times longer than existing state-of-the-art alloys. These new alloys can be used to build aerospace parts for high temperature applications, like those inside aircraft and rocket engines, because ODS alloys can withstand harsher conditions before reaching their breaking point.

“The nanoscale oxide particles convey the incredible performance benefits of this alloy,” said Dale Hopkins, deputy project manager of NASA’s Transformational Tools and Technologies project.

It’s challenging and expensive to produce ODS alloys for these extreme environments. To develop NASA Alloy GRX-810, agency researchers used computational models to determine the alloy’s composition. The team then leveraged 3D printing to uniformly disperse nanoscale oxides throughout the alloy, which provides improved high-temperature properties and durable performance. This manufacturing process is more efficient, cost effective, and cleaner than conventional manufacturing methods.

Impacts and Benefits

These alloys have major implications for the future of sustainable flight. For example, when used in a jet engine, the alloy’s higher temperature and increased durability capability translates into reduced fuel burn and lower operating and maintenance costs.

This alloy also affords engine part designers new flexibilities like lighter materials paired with vast performance improvements. Designers can now contemplate tradeoffs they couldn’t consider before, without sacrificing performance.

AM Chronicle Journal Issue 3

Breakthrough Performance: A Revolution in Materials Development

NASA’s new alloys deliver enhanced mechanical properties at extreme temperatures. At 2,000° F, GRX-810 shows remarkable performance improvements over current state-of-the-art alloys including:

  • Twice the strength to resist fracturing
  • Three and a half times the flexibility to stretch/bend prior to fracturing
  • More than 1,000 times the durability under stress at high temperatures

“This breakthrough is revolutionary for materials development. New types of stronger and more lightweight materials play a key role as NASA aims to change the future of flight,” said Hopkins. “Previously, an increase in tensile strength usually lowered a material’s ability to stretch and bend before breaking, which is why our new alloy is remarkable.”

Discovery/Development: Coupling Additive Manufacturing with Material Modeling

The team applied thermodynamic modeling and leveraged 3D printing to develop the new high-temperature alloy that delivered this breakthrough performance.

“Applying these two processes has drastically accelerated the rate of our materials development. We can now produce new materials faster and with better performance than before,” said Tim Smith, a material research scientist at NASA’s Glenn Research Center in Cleveland and one of the inventors of this new alloy.

“What used to take years through a trial-and-error process, now takes a matter of weeks or months to make discoveries,” added Hopkins.

Using thermodynamic modeling, one of many computational tools discussed within the NASA 2040 Vision Study, the team discovered the optimal alloy composition after only 30 simulations.

This modeling tool produces results in much less time and with lower costs than traditional trial-and-error processes. The tool also avoids dead ends by showing researchers not just what metal types to incorporate but how much of each element to infuse into the composition. “The performance of this alloy clearly demonstrates the modeling tool’s maturity and ability to produce significant results,” said Steve Arnold, materials and structures technical discipline lead at NASA Glenn.

This new alloy is just one example of how the Transformational Tools and Technologies project delivers innovative solutions through foundational research and cross-cutting tools. Watch NASA’s Additive Manufacturing Alloys for High-Temperature Applications Webinar to learn more about the technical details of this innovation and how NASA technology is available to industry and other organizations.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

Original Source

3d printing additive manufacturing Aerospace Metal 3D Printing Metal AM NASA USA
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management Insights

Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

July 4, 202520 Mins Read
Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D News

Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

July 4, 20252 Mins Read
LACS equipment set-up to add a coating to repair a panel aircraft wing Insights

Laser-assisted cold spray: a new generation of innovative manufacturing technology

July 3, 20259 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75