Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Montana State University researchers unveil 3D printing technology that could advance biofilm science

News By AM Chronicle EditorJuly 12, 20224 Mins Read
image3
MSU microbiology doctoral student Kathryn Zimlich, left, and Isaak Thornton, doctorate student in mechanical engineering, with a 3D printing device they have used to deposit microbes and create biofilms. MSU Photo by Adrian Sanchez-Gonzalez
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Combatting life-threatening bacterial infections, reducing slime that clogs pipes, preventing plaque buildup on teeth — all could one day benefit from a new technology being developed by Montana State University researchers using 3D printed biofilm. 

More from the News 

When bacteria and other microbes stick to surfaces and create slimy mats — called biofilm — they form complex communities that are often resistant to traditional disinfectants. Now, scientists in MSU’s Center for Biofilm Engineering are developing a tool for replicating the microbial mosaics so that innovative treatments can be studied.

“We’re excited to share the first glimpses of this technology,” said Isaak Thornton, who is earning his doctorate in mechanical engineering. Thornton, along with microbiology doctoral student Kathryn Zimlich, will present their work during the annual Montana Biofilm Meeting in Bozeman on July 12-14, which convenes researchers and industry partners from around the world to discuss the latest biofilm science.

For the past two years, Zimlich and Thornton have designed and tested a 3D printing device that can precisely lay out a grid of individual bacteria in hydrogel — a clear, Jell-O-like substance. Tapping into advances in 3D printing, the researchers can map out the microbes within drops of liquid hydrogel resin and then use laser light to solidify the material, constructing a rudimentary biofilm.

“We can spatially arrange and encapsulate cells exactly where we want them,” said Thornton, who is conducting the research in the lab of Jim Wilking, associate professor in the Department of Chemical and Biological Engineering in MSU’s Norm Asbjornson College of Engineering.

So far Zimlich and Thornton have only used a single species of bacteria, but by using the 3D printer to do multiple passes, each with a different species or strain of bacteria, they could start to create the more complex and layered biofilms found in nature. By adding fluorescent dye to the bacteria, the researchers can easily see the microbes using specialized microscopes, allowing them to study the interactions that happen among the cells.

“Even the simplest biofilm systems are complicated,” Zimlich said. “It’s like a forest where there’s a lot of diversity. We’ve needed new tools to see how that diversity develops and is maintained.”

It’s known that the dynamic environment within a biofilm can contribute to making microbes resistant to traditional treatments. MSU Regents Professor and longtime biofilm researcher Phil Stewart has shown that a bacteria that commonly causes dangerous wound infections resists antibiotics because the cells in the lower level of the biofilm are cut off from oxygen and other compounds, causing them to go dormant and thereby changing their biology enough that the drug is rendered ineffective.

“One thing that’s becoming clearer is that there’s potential to treat these pathogenic bacteria by altering the interactive biofilm environment instead of trying to use harsh chemical products,” said Zimlich, whose research adviser is Matthew Fields, director of the Center for Biofilm Engineering. For example, treatments could involve introducing harmless bacteria that compete with the harmful microbes and disrupt the protective biofilm.

Developing those treatments will require lots of testing in a controlled lab environment, which is where the new 3D printing tool comes in.

“We think it’s possible to construct analogs of how these pathogenic biofilms form naturally,” Zimlich said.

That’s potentially of great interest to the attendees of the biofilm meeting. Companies like Proctor and Gamble, 3M and Ecolab, as well as NASA, are eager to develop new ways of effectively controlling problem biofilms, according to Paul Sturman, who coordinates the center’s work with its roughly 30 industrial partners.

“It’s really all about helping them develop products that are useful,” Sturman said. “The meeting is a great way for our members to keep apprised of the latest biofilm research. And we get to showcase the work we’re doing and are capable of doing.”

Since it was founded more than 30 years ago, the Center for Biofilm Engineering has been a world leader in the study of biofilms, pioneering an interdisciplinary approach that combines multiple areas of engineering, microbiology and other fields to solve real-world problems. That’s what attracted Thornton to the project, he said.

“It’s rewarding to have this opportunity to bring my skills in mechanical engineering to help microbiologists answer a new generation of questions,” Thornton said.

Zimlich agrees. “We have to work together,” she said. “I think this is one of the best places in the world to be exploring these questions.”

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

Original Source

3d printing 3D printing research additive manufacturing biofilm biomedical Montana State University USA
AM Chronicle Editor

LATEST FROM AM
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read
Novel Magnetic 3D-Printed Pen News

Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

June 3, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75