Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

MIT engineers develop a fully 3D-printed electrospray engine

News By AM Chronicle EditorFebruary 12, 20256 Mins Read
MIT Electrospray Thrusters
MIT Electrospray Thrusters
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

An electrospray thruster applies an electric field to a conductive liquid, generating a high-speed jet of tiny droplets that can propel a spacecraft. These miniature electrospray thrusters are ideal for small satellites called CubeSats that are often used in academic research.

Since electrospray thrusters utilize propellant more efficiently than the powerful, chemical rockets used on the launchpad, they are better suited for precise, in-orbit maneuvers. The thrust generated by an electrospray thruster emitter is tiny, so electrospray thrusters typically use an array of emitters that are uniformly operated in parallel.

However, these multiplexed electrospray thrusters are typically made via expensive and time-consuming semiconductor cleanroom fabrication, which limits who can manufacture them and how the electrospray thrusters can be applied.

To help break down barriers to space research, MIT engineers have demonstrated the first fully 3D-printed, droplet-emitting electrospray thruster. Their device, which can be produced rapidly and for a fraction of the cost of traditional electrospray thrusters, uses commercially accessible 3D printing materials and techniques. The electrospray thrusters could even be fully made in orbit, as 3D printing is compatible with in-space manufacturing.

By developing a modular process that combines two 3D printing methods, the researchers overcame the challenges involved in fabricating a complex device comprised of macroscale and microscale components that must work together seamlessly.

Their proof-of-concept electrospray thruster comprises 32 electrospray emitters that operate together, generating a stable and uniform flow of propellant. The 3D-printed electrospray thruster generated as much or more thrust than existing droplet-emitting electrospray thrusters. With this technology, astronauts might quickly print an electrospray engine for a satellite without needing to wait for one to be sent up from Earth. 

“Using semiconductor manufacturing doesn’t match up with the idea of low-cost access to space. We want to democratize space hardware. In this work, we are proposing a way to make high-performance hardware with manufacturing techniques that are available to more players,” says Luis Fernando Velásquez-García, a principal research scientist in MIT’s Microsystems Technology Laboratories (MTL) and senior author of a paper describing the thrusters, which appears in Advanced Science.

He is joined on the paper by lead author Hyeonseok Kim, an MIT graduate student in mechanical engineering.

Understanding Electrospray Thrusters

An electrospray thruster has a reservoir of propellant that flows through microfluidic channels to a series of emitters. An electrostatic field is applied at the tip of each electrospray thruster emitter, triggering an electrohydrodynamic effect that shapes the free surface of the liquid into a cone-shaped meniscus that ejects a stream of high-speed charged droplets from its apex, producing thrust.

The emitter tips need to be as sharp as possible to attain the electrohydrodynamic ejection of propellant at a low voltage. The device also requires a complex hydraulic system to store and regulate the flow of liquid, efficiently shuttling propellant through microfluidic channels.

The emitter array is composed of eight emitter modules. Each emitter module contains an array of four individual emitters that must work in unison, forming a larger system of interconnected modules.

“Using a one-size-fits-all fabrication approach doesn’t work because these subsystems are at different scales. Our key insight was to blend additive manufacturing methods to achieve the desired outcomes, then come up with a way to interface everything so the parts work together as efficiently as possible,” Velásquez-García says.

To accomplish this, the researchers utilized two different types of vat photo polymerization printing (VPP). VPP involves shining light onto a photosensitive resin, which solidifies to form 3D structures with smooth, high-resolution features.

The researchers fabricated the emitter modules using a VPP method called two-photon printing. This technique utilizes a highly focused laser beam to solidify resin in a precisely defined area, building a 3D structure one tiny brick, or voxel, at a time. This level of detail enabled them to produce extremely sharp emitter tips and narrow, uniform capillaries to carry propellant.

The emitter modules are fitted into a rectangular casing called a manifold block, which holds each in place and supplies the emitters with propellant. The manifold block also integrates the emitter modules with the extractor electrode that triggers propellant ejection from the emitter tips when a suitable voltage is applied. Fabricating the larger manifold block using two-photon printing would be infeasible because of the method’s low throughput and limited printing volume.

Instead, the researchers used a technique called digital light processing, which utilizes a chip-sized projector to shine light into the resin, solidifying one layer of the 3D structure at a time.

“Each technology works very well at a certain scale. Combining them, so they work together to produce one device, lets us take the best of each method,” Velásquez-García says.

Propelling performance

Electrospray thrusters represent a significant advancement in propulsion technology, offering unique advantages for future space missions.

But 3D printing the electrospray engine components is only half the battle. The researchers also conducted chemical experiments to ensure the printing materials were compatible with the conductive liquid propellant. If not, the propellant might corrode the engine or cause it to crack, which is undesirable for hardware meant for long-term operation with little to no maintenance.

They also developed a method to clamp the separate parts together in a way that avoids misalignments which could hamper performance and ensures the device remains watertight.

In the end, their 3D-printed prototype was able to generate thrust more efficiently than larger, more expensive chemical rockets and outperformed existing droplet electrospray engines.

Moreover, electrospray thrusters have become increasingly popular for applications beyond traditional aerospace, including microsatellites and small-scale propulsion systems.

The researchers also investigated how adjusting the pressure of propellant and modulating the voltage applied to the engine affected the flow of droplets. Surprisingly, they achieved a wider range of thrust by modulating the voltage. This could eliminate the need for a complex network of pipes, valves, or pressure signals to regulate the flow of liquid, leading to a lighter, cheaper electrospray thruster that is also more efficient.

As research continues, the efficiency and adaptability of electrospray thrusters could revolutionize how we approach satellite missions and interplanetary exploration.

“We were able to show that a simpler thruster can achieve better results,” Velásquez-García says.

The researchers want to continue exploring the benefits of voltage modulation in future work. They also want to fabricate denser and larger arrays of emitter modules. In addition, they may explore the use of multiple electrodes to decouple the process of triggering of the electrohydrodynamic ejection of propellant from setting up the shape and speed of the emitted jet. In the long run, they also hope to demonstrate a CubeSat that utilizes a fully 3D-printed electrospray engine during its operation and deorbiting.

This research is funded, in part, by a MathWorks fellowship and the NewSat Project, and was carried out, in part, using MIT.nano facilities.

Original Source

3d printing additive manufacturing
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management Insights

Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

July 4, 202520 Mins Read
Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D News

Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

July 4, 20252 Mins Read
LACS equipment set-up to add a coating to repair a panel aircraft wing Insights

Laser-assisted cold spray: a new generation of innovative manufacturing technology

July 3, 20259 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75