Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
    Flames stream from New Frontier Aerospace’s Mjölnir rocket engine during a hot-fire test. (NFA Photo)

    New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

    June 24, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International

    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

To guide cancer therapy, device quickly tests drugs on tumor tissue

News By AM Chronicle EditorDecember 26, 20187 Mins Read
MIT 3D Microfluidics 0
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

MIT and Draper researchers have 3-D printed a novel microfluidic device that simulates cancer treatments on biopsied tumor tissue, so clinicians can better examine how individual patients will respond to different therapeutics — before administering a single dose.

Testing cancer treatments today relies mostly on trial and error; patients may undergo multiple time-consuming and hard-to-tolerate therapies in pursuit of one that works. Recent innovations in pharmaceutical development involve growing artificial tumors to test drugs on specific cancer types. But these models take weeks to grow and don’t account for an individual patient’s biological makeup, which can affect treatment efficacy.

The researchers’ device, which can be printed in about one hour, is a chip slightly larger than a quarter, with three cylindrical “chimneys” rising from the surface. These are ports used to input and drain fluids, as well as remove unwanted air bubbles. Biopsied tumor fragments are placed in a chamber connected to a network of channels that deliver fluids — containing, for instance, immunotherapy agents or immune cells — to the tissue. Clinicians can then use various imaging techniques to see how the tissue responds to the drugs.

A key feature was using a new biocompatible resin — traditionally used for dental applications — that can support long-term survival of biopsied tissue. Although previous 3-D-printed microfluidics have held promise for drug testing, chemicals in their resin usually kill cells quickly. The researchers captured fluorescence microscopy images that show their device, called a tumor analysis platform (TAP), kept more than 90 percent of the tumor tissue alive for at least 72 hours, and potentially much longer.

Because the 3-D printed device is easy and cheap to fabricate, it could be rapidly implemented into clinical settings, the researchers say. Doctors could, for instance, print out a multiplexed device that could support multiple tumor samples in parallel, to enable modeling of the interactions between tumor fragments and many different drugs, simultaneously, for a single patient.

“People anywhere in the world could print our design. You can envision a future where your doctor will have a 3-D printer and can print out the devices as needed,” says Luis Fernando Velásquez-García, a researcher in the Microsystems Technology Laboratories and co-author on a paper describing the device, which appears in the December issue of the Journal of Microelectromechanical Systems. “If someone has cancer, you can take a bit of tissue in our device, and keep the tumor alive, to run multiple tests in parallel and figure out what would work best with the patient’s biological makeup. And then implement that treatment in the patient.”

A promising application is testing immunotherapy, a new treatment method using certain drugs to rev up a patient’s immune system to help it fight cancer. (This year’s Nobel Prize in physiology or medicine was awarded to two immunotherapy researchers who designed drugs that block certain proteins from preventing the immune system from attacking cancer cells.) The researchers’ device could help doctors better identify treatments to which an individual is likely to respond.

“Immunotherapy treatments have been specifically developed to target molecular markers found on the surface of cancer cells. This helps to ensure that the treatment elicits an attack on the cancer directly while limiting negative impacts on healthy tissue. However, every individual’s cancer expresses a unique array of surface molecules — as such, it can be difficult to predict who will respond to which treatment. Our device uses the actual tissue of the person, so is a perfect fit for immunotherapy,” says first author Ashley Beckwith SM ’18, a graduate researcher in Velásquez-García’s research group.

Co-author on the paper is Jeffrey T. Borenstein, a researcher at Draper, where he leads its program in immuno-oncology. “A key challenge in cancer research has been the development of tumor microenvironments that simulate mechanisms of cancer progression and the tumor-killing effects of novel therapeutics,” Borenstein says. “Through this collaboration with Luis and the MTL, we are able to benefit from their great expertise in additive manufacturing technologies and materials science for extremely rapid design cycles in building and testing these systems.”

Supporting cells

Microfluidics devices are traditionally manufactured via micromolding, using a rubberlike material called polydimethylsiloxane (PDMS). This technique, however, was not suitable for creating the three-dimensional network of features — such as carefully sized fluid channels — that mimic cancer treatments on living cells. Instead, the researchers turned to 3-D printing to craft a fine-featured device “monolithically” — meaning printing an object all in one go, without the need to assemble separate parts.

The heart of the device is its resin. After experimenting with numerous resins over several months, the researchers landed finally on Pro3dure GR-10, which is primarily used to make mouthguards that protect against teeth grinding. The material is nearly as transparent as glass, has barely any surface defects, and can be printed in very high resolution. And, importantly, as the researchers determined, it does not negatively impact cell survival.

The team subjected the resin to a 96-hour cytotoxicity test, an assay that exposes cells to the printed material and measures how toxic that material is to the cells. After the 96 hours, the cells in the material were still kicking. “When you print some of these other resin materials, they emit chemicals that mess with cells and kill them. But this doesn’t do that,” Velasquez-Garcia says. “To the best of my knowledge, there’s no other printable material that comes close to this degree of inertness. It’s as if the material isn’t there.”

Setting traps

Two other key innovations on the device are the “bubble trap” and a “tumor trap.” Flowing fluids into such a device creates bubbles that can disrupt the experiment or burst, releasing air that destroys tumor tissue.

To fix that, the researchers created a bubble trap, a stout “chimney” rising from the fluid channel into a threaded port through which air escapes. Fluid — including various media, fluorescent markers, or lymphocytes — gets injected into an inlet port adjacent to the trap. The fluid enters through the inlet port and flows past the trap, where any bubbles in the fluid rise up through the threaded port and out of the device. Fluid is then routed around a small U-turn into the tumor’s chamber, where it flows through and around the tumor fragment.

This tumor-trapping chamber sits at the intersection of the larger inlet channel and four smaller outlet channels. Tumor fragments, less than 1 millimeter across, are injected into the inlet channel via the bubble trap, which helps remove bubbles introduced when loading. As fluid flows through the device from the inlet port, the tumor is guided downstream to the tumor trap, where the fragment gets caught. The fluid continues traveling along the outlet channels, which are too small for the tumor to fit inside, and drains out of the device. A continuous flow of fluids keeps the tumor fragment in place and constantly replenishes nutrients for the cells.

“Because our device is 3-D printed, we were able to make the geometries we wanted, in the materials we wanted, to achieve the performance we wanted, instead of compromising between what was designed and what could be implemented — which typically happens when using standard microfabrication,” Velásquez-García says. He adds that 3-D printing may soon become the mainstream manufacturing technique for microfluidics and other microsystems that require complex designs.

In this experiment, the researchers showed they could keep a tumor fragment alive and monitor the tissue viability in real-time with fluorescent markers that make the tissue glow. Next, the researchers aim to test how the tumor fragments respond to real therapeutics.

“The traditional PDMS can’t make the structures you need for this in vitro environment that can keep tumor fragments alive for a considerable period of time,” says Roger Howe, a professor of electrical engineering at Stanford University, who was not involved in the research. “That you can now make very complex fluidic chambers that will allow more realistic environments for testing out various drugs on tumors quickly, and potentially in clinical settings, is a major contribution.”

Howe also praised the researchers for doing the legwork in finding the right resin and design for others to build on. “They should be credited for putting that information out there … because [previously] there wasn’t the knowledge of whether you had the materials or printing technology to make this possible,” he says. Now “it’s a democratized technology.”

e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3D printed additive manufacturing biopsied tumor tissue Cancer treatment Draper I3DPn Indian 3D Printing Network microfluidic device micromolding Microsystems Technology Laboratories MIT polydimethylsiloxane Researchers
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet. News

Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

June 28, 20255 Mins Read
Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International Uncategorized

Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

June 28, 20252 Mins Read
Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt News

Freemelt receives order for Freemelt ONE from a German industrial company

June 25, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75