Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » India

India Researchers Explore 3D Printing Heart Valves

India News By AM Chronicle EditorFebruary 15, 20194 Mins Read
third
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

The heart is central to keeping you alive, pumping blood, oxygen, and nutrients throughout your body—and eliminating waste too. Disease of this central organ is also one of the leading causes of deaths in humans, with coronary heart disease most common. Hundreds of thousands of individuals die each year from heart-related issues, and over 700,000 individuals in the US have heart attacks.

Researchers continue to find better ways to prevent such disease, along with saving patients who are in peril after experiencing cardiac abnormalities. Enter 3D printing, and new research from India, as scientists Rajat Vashistha, Prasoon Kumar, Arun Kumar Dangi, Naveen Sharma, Deepak Chhabra, and Pratyoosh Shukla publish their findings in ‘Quest for cardiovascular interventions: precise modeling and 3D printing of heart valves.’

The authors are encouraged not only by the ‘digitalization of health care practices’ today but also by 3D simulation and computational modeling assisting in surgeries. With these progressive methods in place and becoming more frequently used by medical professionals around the world, the scientists see 3D printing also as having great potential for helping to resolve valvular problems—especially as bioprinting of tissues (and organs, eventually) continues.

The scientists list the following issues as the most common leading to valvular heart diseases (VHDs):

  • Aortic regurgitation
  • Aortic stenosis
  • Primary mitral regurgitation
  • Secondary mitral regurgitation
  • Mitral stenosis
  • Tricuspid regurgitation
  • Tricuspid stenosis along with coronary artery disease,
  • Rheumatic fever
  • Bacterial endocarditis

“These VHDs are associated with significant morbidity and mortality in an aged population, as they are correlated with vascular disorders,” state the researchers. “Considering the reasonable percentage of aged population in Europe, North America, Japan and other countries, VHDs are one of the prominent causes of death in these regions and need immediate attention.”

The team states that prosthetic valve replacement, by means of either mechanical or biological valve, is the ‘only exclusive solution’ possible today. There are still problems with these types of valves, however, due to issues with leaking, the need for excessive care, medication, and continued imaging by specialists. Diagnosis can often be overly invasive too, and the researchers point out that improvements can be made with the use of 3D technology not only in diagnosing but also in simulations used in establishing alternative therapeutics.

valve

Schematic representation of the cardiovascular modeling process for patient specific diseases diagnostics. Processes 1, 2 and 3 show the sequential steps whereas step 4 and 5 shows conditions for real time processing. a. Thick and calcific Mitral valve with decreased opening in case of Chronic Rheumatic Heart Disease, (b). Parasternal Short Axis view of Mitral valve showing thickened anterior and posterior leaflets with reduced valve area, (c). Four Chamber view showing thickened Tricuspid Valve (yellow arrow) suggestive of organic Tricuspid valve disease and thick and calcific Mitral valve (red arrow) in case of Rheumatic Heart Disease, (d). 3D mesh for the volume generated geometry. e. Numerical setup for the problem in CFD software, F. Result post processing.)

 

Previous efforts at creating artificial heart valves have been rife with challenges, leaving the researchers to state:

“Henceforth advancements in imaging, computational modeling and designing tools need to be integrated with emerging areas of tissue engineering in order to develop human prosthesis similar to native tissues. Tissue engineering holds the potential to reduce patient–prosthesis mismatch in the direction of personalized medicine and accelerate the design and developmental time of prosthetic devices.”

The creation of a heart valve via tissue engineering allows the artificial material to mimic the ‘native valve’ as it is implanted. Also, a 3D printed model gives medical professionals the opportunity to understand tissue biology and more about how a patient’s disease is progressing—and what therapeutic interventions might be effective.

“Before tissue engineering a heart valve, it is imperative to understand the multi-scale architecture, geometry and biomechanics of a heart valve’s parts that play a significant role in remodeling of a neo tissue matrix in the dynamic mechanical environment of a functional heart valve,” state the researchers. “These understandings will enable proper selection of biomaterials, fabrication methodologies, characterization tools and developmental environments for generation of tissue engineered heart valves (TEHVs).”

3D printing via extrusion is not the best choice for creating heart valves, nor is ceramic based 3D printing or SLA; however, bioprinting and inkjet technology may be best suited, along with materials bordering on the 4D realm, inspired by origami. The key in the future will be to refine tissue engineering bioprinting further to ‘eradicate potential defects in prosthetic heart valves,” concluded the researchers.

Source: 3dprint.com

e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3D printing of heart valves 3D simulation 3D technology bioprinting cardiovascular coronary heart disease I3DPn Imaging interventions Indian 3D Printing Network Indian researchers
AM Chronicle Editor

LATEST FROM AM
HBD Advances in Metal 3D Printing for Customized Orthopedic Implants Insights

HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

June 13, 20253 Mins Read
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75