Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    May 20, 2025
    The new standard in 3D concrete printing: Saint-Gobain Weber certified by Kiwa!

    The new standard in 3D concrete printing: Saint-Gobain Weber certified by Kiwa!

    May 20, 2025
    Image credit: Philips

    Philips Unveils 3D-Printable Components for Product Repair, Promoting Sustainability

    May 19, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Source: CEAD

    CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

    May 19, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » APAC

GE Aviation Singapore provides metal 3D printing for engine component repair

APAC News Press Release By AM Chronicle EditorApril 1, 20226 Mins Read
GEADPR062a 768x512 1
(PHOTO: GE Aviation Singapore)
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

As metal additive technology continues to gain momentum in the design and industrial production of new aerospace components, GE Aviation’s Loyang facility is the first maintenance, repair and overhaul (MRO) facility worldwide that has been approved to use metal additive manufacturing for commercial jet engine component repairs.

GE Aviation Engine Services Singapore (GE AESS) currently employs more than 1,700 employees in the city-state and accounts for more than 60 percent of GE Aviation’s global repair volume.

More from the News 

Parts printed using 3D technology are typically printed using STL files generated from CAD drawings. However, this works only for new-make production where the goal is to produce identical parts conforming to the blueprint. When repairing used parts, however, the repair has to be customised for each individual part because each part wears differently during service. Additive technology in repairs also offers the possibility of embracing complexity, rather than shying away from it. Chen Keng Nam, executive manufacturing leader at GE AESS in Singapore, has also been involved in the metal additive roll-out. “This disruptive technology can be used for lots of applications, not only in aviation. When I see beyond the realm of repair into new-make, it’s mind-blowing to see the parts that we can design and print using additive. Now designers are making use of the ability to produce new designs that couldn’t be imagined or manufactured before with traditional methods.”

Iain Rodger, managing director at GE AESS, also sees the potential for metal additive technology in MRO. “In this part of the supply chain our customers truly value faster turn-around time, and that’s what we are achieving. Using our GE Additive Concept Laser M2 machines typically halves the amount of time it takes us to repair these aircraft parts.”

Rodger says his teams are already using additive technology to repair parts in GE Aviation’s CF6 engines, the most-reliable and best-selling commercial engine on wide-body aircraft. The next goal is to include parts on the CFM56,the best-selling engine in commercial aviation history. One example is the repair of high-pressure compressor (HPC) blades that run at high speeds and tight clearances within aircraft engines. They face regular erosion and wear and tear that, over time, demand continuous repair and replacement. Repairing these blade tips used to require a long process of cutting, welding and grinding to create the proper shape.

GE Aviation has established an automated additive manufacturing process to repair the HPC blade tips, saving time and costs associated with labor and machining. The team created image-analysis software that maps the shape of a used blade and creates customized instructions for the Concept Laser M2 machine to build a new tip with precise alignment and profile. The 3D-printed part is near-net shape and can be finished with minimal additional processing.

“Productivity has increased with our employees able to repair twice as many parts in a day compared to the conventional repair process. Less equipment is also needed for post-processing so the floor space required is reduced by one-third,” says Rodger. “Further to that we are currently assessing what we are going to do in turbine parts and other components beyond compressors. Day-to-day, working with customers, they will know that there’s a difference as they will be seeing their parts return to them more quickly.”

Beyond the much faster turn-around times possible with metal additive technology in aircraft part repairs, Rodger sees another significant win for GE Aviation, for customers and for the aviation industry more broadly. “To me one of the significant advantages of additive is it’s sustainability. This is going to allow us to repair more parts and throw fewer parts into the bin, use less energy, generate less waste and have a smaller footprint. Repair capability is a big part of the sustainability journey. As the industry expands and new technology is developed, that will only increase.”

As part of its national high-tech strategy, Singapore’s Economic Development Board supported the initial development trials and training for the introduction of metal additive technology for aviation maintenance into the country.

Shih Tung Ngiam, a senior engineering manager at GE Aviation, Engine Services in Singapore, was involved in the project from its inception. He acts as a bridge between the local team and the wider additive community across GE Aviation and GE Additive to industrialise the process. “While teams at the GE Aviation Additive Technology Center in Cincinnati and GE Additive Lichtenfels in Germany worked on developing printing parameters for the Concept Laser M2 machine, our team here in Singapore focused on the modifications needed to make the process robust and production-friendly in a high-volume repair process,” said Ngiam.

AM Chronicle Journal Issue 3

The Singapore team designed tooling to prepare and print parts efficiently and fine-tuned the repair process, including printing, pre- and post-processing and inspection. Extensive trials and tests were conducted to ensure the quality and safety of the parts before the repair was substantiated.

In 2020 Ngiam and the team also designed a pilot production line, including an automated powder recycling system, to streamline the repair operation. The COVID-19 pandemic disrupted the approach for a while; however, by 2021 the team in Loyang was ready to go live on its full-scale production line. “Additive gives us speed and productivity with less floor space required. We gave a lot of careful consideration to how best to integrate the M2s into the rest of the repair line. We completed an assessment of which parts of the repair we should leave alone, which ones could benefit from additive and what other changes we needed to make to the repair process for it to make sense,” says Ngiam.

The two big advantages that metal additive provides the site are speed and the near-net-shape product. This allows the team to increase productivity and reduce floor space required. The traditional methods for repairing HPC blades involves a lot of effort to weld the blade and then a lot of additional effort to remove the excess material. By using the Concept Laser M2 metal 3D printers, the repaired blade is very close to the final shape when it comes out of the machine, so it takes much less labor and equipment to achieve the finished profile.

Given the critical nature of aerospace components, extensive analysis and testing are required before any repair can be approved, even more so when new technologies such as additive manufacturing are involved. GE AESS worked closely with GE Aviation Engineering to produce parts for testing and to establish a robust quality-assurance process before the process could be approved. As the aerospace industry becomes more familiar with additive, the approval process can be streamlined.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

Original Source

3d printing additive manufacturing Aerospace GE GE Aviation Metal Additive Manufacturing Repair Singapore
AM Chronicle Editor

LATEST FROM AM
Credits: Outokumpu Insights

Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

May 22, 20252 Mins Read
World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture News

World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

May 22, 20254 Mins Read
Why Bioprinting Innovations can elevate healthcare and industrial AM Insights

Why Bioprinting Innovations can elevate healthcare and industrial AM

May 21, 20255 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75