Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Fraunhofer Institute Researchers Develop Solution To Simulate the Entire Process Chain of Laser Powder Bed Fusion

News By AM Chronicle EditorJanuary 3, 20235 Mins Read
iwm additive fertigung durchgaengig simuliert bild 1
© Fraunhofer IWM Simulation of the formation of a columnar microstructure in the laser melt pool
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Additive manufacturing of tools using a laser powder bed fusion process offers a great number of advantages: It is economical, precise and allows for customized solutions. That said, it can be difficult to determine the optimal process parameters, such as the scan speed or power of the laser. For the first time, researchers at Fraunhofer are now simulating the process at the microstructure level in order to identify direct correlations between the workpiece properties and the selected process parameters. To do this, they are combining a number of different simulation methods.

iwm additive fertigung durchgaengig simuliert bild 1
© Fraunhofer IWM
Simulation of the formation of a columnar microstructure in the laser melt pool

Additive manufacturing offers numerous advantages. Most notably, energy and materials can be saved, and complex component geometries and customized products can also be realized. The laser powder bed fusion process, or LPBF for short, is a widely used process for the additive manufacturing of components and tools: This process impresses with its short innovation cycles and high cost-effectiveness. The principle here is that a powder bed up to 50 micrometers thick is heated with pinpoint accuracy by a laser. The powder liquefies, the particles fuse and the melt pool solidifies as soon as the laser moves on. In areas where the laser beam does not come into contact with the powder, no fusion occurs. This process is repeated numerous times, causing the component to grow in height layer by layer.

 

iwm additive fertigung durchgaengig simuliert bild 2
© Fraunhofer IWM
Simulation of the LPBF pro-cess with lack of fusion defects and residual porosity

It is important that the finished component has a density of one hundred percent, no pores, and that each newly applied layer binds firmly to the layer below. This is achieved by adjusting the process parameters, such as the scan speed and power of the laser. The microstructure of metallic grains is particularly important for the mechanical properties of the workpiece. These have certain orientations, sizes and shapes and have a considerable impact on the mechanical properties, such as the material’s elastic modulus or the yield stress – i.e., the load above which the material deforms plastically.

So the question is: How do you control the process in such a way that the resulting microstructure is suited to the component’s future conditions of use? Furthermore, components and workpieces are often made out of different metallic alloys: steels, aluminum alloys, titanium alloys with various compositions and mixing ratios. Each alloy material has different properties and forms different microstructures. Finding the optimal process parameters and materials and matching them to each other has, up to this point, been an experimental and therefore time-consuming endeavor.

iwm additive fertigung durchgaengig simuliert bild 3
© Fraunhofer IWM
Raytracing simulation of the LPBF process

Simulating the entire process chain

Researchers at the Fraunhofer Institute for Mechanics of Materials IWM are now taking a different approach. “Because the laser powder bed fusion process is becoming increasingly complex due to new materials and requirements, we have decided to simulate the entire process chain,” explains Dr. Claas Bierwisch, team leader at Fraunhofer IWM. “This enables us not only to minimize trial-and-error cycles, but also to quickly and effectively evaluate variations in the overall process and eliminate undesirable effects during manufacturing.”

The important thing here is that the researchers have combined different simulation methods. Using the discrete element method, they first simulate how the individual powder particles are spread in the building chamber with the aid of a special tool, namely the doctor blade. Next, the way in which the powder particles melt is simulated using the smoothed particle hydrodynamics method – both the laser interaction and heat conduction are calculated, as well as the surface tension that causes the melt to flow. The calculation also accounts for gravity and the recoil pressure that occurs when the material vaporizes.

iwm additive fertigung durchgaengig simuliert bild 4
© Fraunhofer IWM
Simulation chain for modeling the LPBF process from powder to mechanical properties

The simulation must also describe the microstructure of the material in order to predict mechanical material properties. “To analyze this microstructure, we have incorporated another simulation method, known as cellular automaton. This describes how the metallic grains grow as a function of the temperature gradient,” explains Bierwisch. This is because temperatures can reach up to 3,000 degrees Celsius where the laser meets the powder, but only a few millimeters away, the material is cool. Furthermore, the laser moves over the powder bed at a speed of up to several meters per second. As a result, the material heats up extremely quickly but then also cools down again within milliseconds. All of this has an impact on how the microstructure is formed. The final step is the finite element simulation: The research team uses this to perform tensile tests in different directions on a representative volume element of the material in order to find out how the material reacts to these loads.

iwm additive fertigung durchgaengig simuliert bild 5
© Fraunhofer IWM
Simulation of the LPBF process with color-coded temperature field

“In the experiment, we can only study the final result, whereas in the simulation, we can watch what happens in real time. In other words, we create a process-structure-property relationship: For example, if we increase the laser power, the microstructure changes. This, in turn, significantly affects the yield stress of the material. The quality of this is completely different to what is possible in an experiment,” says Bierwisch, enthusiastically. “You can detect interrelationships in an almost investigative way.”

 

 

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

Original Source

 

3d printing additive manufacturing Fraunhofer Institute Germany Metal Additive Manufacturing research simulation Software
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management Insights

Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

July 4, 202520 Mins Read
Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D News

Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

July 4, 20252 Mins Read
LACS equipment set-up to add a coating to repair a panel aircraft wing Insights

Laser-assisted cold spray: a new generation of innovative manufacturing technology

July 3, 20259 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75