Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Engineers from the University of Glasgow demonstrated lightweight and effective 3D printed heat exchanger

News By AM Chronicle EditorApril 18, 20224 Mins Read
heat exchanger 1 780x470 1
COMSOL Multiphysics environment for heat transfer and fluid flow simulation (a) imported CAD gyroid unit-cell of size 4.6mm x 4.6mm x 4.6mm and wall thickness of 300um (b) physical model depicting imposed boundary conditions.
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

A new type of lightweight, 3D printed heat exchanger with a maze-like, repeating gyroid architecture design is more compact and efficient than its conventional counterparts, its developers say. A team led by engineers from the University of Glasgow has developed the system, which exploits the unique properties of microscale surfaces to create a high-performance heat exchanger.

More from the News

Heat exchangers, devices that transfer heat between fluids without mixing them, have a wide range of practical applications. Heat exchangers which transfer thermal energy between fluids are used in systems including refrigeration, fuel cells, and the types of internal combustion engines used in cars and aircrafts.

In a new paper published in Applied Thermal Engineering, the researchers describe how they developed and built the prototype system, which they estimate to be 50% more effective than a market-leading conventional heat exchanger despite being one-tenth of its size.

The system owes its effectiveness to the design of architected surfaces over which liquids flow through the exchanger. The cube-shaped exchanger draws water through a core, studded with tiny holes arranged in a gyroid configuration.

heat exchanger 2 scaled 1
Design and fabrication of gyroid lattice compact heat exchanger (a) CAD surface model of the gyroid unit cell of 4.6mm x 4.6mm x 4.6mm (b) CAD model of gyroid lattice exchanger core comprising 7 x 7 x 7 array of gyroid unit cells with a wall thickness of 300um and 80% porosity (c) CAD sectional view of the heat exchanger clearly depicting the gyroid core, covering plates and headers assembly (d) 3D printed heat exchanger (e) X-ray micro-computed tomographic image of a plane passing through the mid-height of the heat exchanger and (f) 3D printed heat exchanger without cover plate (g) small scale imperfections.

 

Gyroids are part of a group of cellular designs that are constructed using triply periodic minimal surface geometries, having non-self-intersecting and highly symmetrical periodic surfaces.

The team chose to use a repeating gyroid architecture for their heat exchanger because the effectiveness of heat exchange is linked to its surface area – the larger the surface area, the more opportunity the fluids have to pass their thermal energy from one to the other. This means that objects with large surface areas can cool or heat fluids faster than those with more limited surface areas.

The team’s microscale gyroid design, which they manufactured from a simple photopolymer using a sophisticated 3D printer, engineers a large surface area into a compact cube measuring 32.2mm on each side and weighing just eight grams.

By drawing water through this dense maze, the researchers were able to demonstrate temperature changes of between 10 and 20ºC when water flowed through their heat exchanger at a rate of between 100 and 270 millimeters per minute.

The team measured the heat transfer coefficient of their new exchanger – the measure of its effectiveness in transferring heat between the fluid and its surfaces – so they could determine how it performed against a series of differently-sized conventional heat exchangers made from materials including polymers and metals.

They found that the effectiveness of their new heat exchanger was 50% more than a thermodynamically-equivalent, most-efficient, counter-flow heat exchanger even though their newly-developed prototype was only 10% of its size.

heat exchanger 3 scaled 1
Simulated thermal iso-surface for (a) hot fluid (b) cold fluid (c) separating wall and (d) pressure contours corresponding to experimental test number 1

 

The research was led by Dr. Shanmugam Kumar from the University of Glasgow’s James Watt School of Engineering, alongside colleagues from Swansea University and Khalifa University of Science and Technology in Abu Dhabi.

Dr. Kumar said: “We’ve been working to find new applications for this type of micro-architected, 3D printed lattices for several years now. We have already demonstrated how they can be used for purposes including recyclable high-performance batteries and the development of future ‘smart’ medical devices like prosthetics and back braces.”

“This latest paper shows that we can use these gyroid lattice architectures to create a material with a remarkably large surface area to volume ratio which lends itself very well to heat exchange.”

“Being able to develop smaller, lighter, more efficient heat exchangers could help us develop refrigeration systems which require less power, for example, or high-performance engines which can be cooled more effectively. We’re keen to develop this technology further with future research.”

The team’s paper, titled ‘High performance, micro-architected, compact heat exchanger enabled by 3D printing’, is published in Applied Thermal Engineering. The research was supported by funding from the Abu Dhabi National Oil Company.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com/

Original Source

3d printing 3D printing research Additive Manufactruing Heat Exchanger Scotland University of Glasgowl
AM Chronicle Editor

LATEST FROM AM
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read
Novel Magnetic 3D-Printed Pen News

Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

June 3, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75