Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Direct 3D-printing of phosphate glass by fused deposition modeling

News By Aditya ChandavarkarJuly 12, 20203 Mins Read
1 s2.0 S0264127520304913 gr6 lrg
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Additive manufacturing of oxide glass enables on-demand, low-cost manufacturing of complex optical components for numerous applications, opening new opportunities to explore functionalities inaccessible otherwise. Here, we report a straightforward extrusion-based 3D-printing approach, deploying the fused deposition modeling (FDM) process, to produce optically transparent phosphate glasses with complex geometries and preserved structural and photoluminescence properties. Using a customized entry-level FDM desktop printer with a layer resolution of 100 μm, highly dense and transparent europium-doped phosphate glass structures can be fabricated from glass filaments pulled using a fiber-drawing tower from the parent glass preform. Combined with the suggested strategies for performance and quality improvement, professional-grade FDM printers can offer better layer resolutions. This direct approach for 3D-printing phosphate glass may open up new horizons not only for developing cutting-edge optical components but also for promoting new biomedical solutions upon making use of alternative biocompatible phosphate compositions.

In this work, the researchers have developed a glass 3D-printing approach based on fused deposition modeling (FDM), to produce highly dense, optically transparent phosphate glass parts with 100 μm layer resolution. Purely inorganic glass compositions have been successfully extruded and directly deposited layer-by-layer using a customized FDM printer. Overall glass properties, such as glass network structure, microstructural features, optical and luminescence properties have been well transferred from the bulk parent glass to the 3D-printed glass parts. The present 3D-printing system is currently being improved at several levels to increase the printing accuracy and guarantee the production of porosity-free, higher optical quality glass prints. A further detailed rheological investigation of the selected glasses, particularly the evolution of their viscosities with temperature and shear rate, will contribute in determining their respective working ranges for an optimized flow behavior through the printing nozzle.

Compared to other glass 3D-printing technologies, they propose a cost-effective, straightforward approach, offering a competitive tradeoff between simplicity of use and optical quality of the produced printed parts. This work enables the in-lab 3D-printing of fully functional glass parts, potentially finding applications for advanced optical systems. It could involve the direct 3D-printing of composite phosphate glass filaments incorporating high amount of rare-earths, metallic ions or nanoparticles, but also the 3D-printing of fully-densified, complex glass preforms subsequently pulled into optical glass fibers. Furthermore, it could benefit other areas such as medicine (e.g., controlled delivery of therapeutic or antibacterial ions upon 3D-printing biocompatible phosphate compositions, such as gallophosphate glasses, chemically close to the aluminophosphate materials presented herein, and extensively studied for their well-established antimicrobial activity.

Source: Direct 3D-printing of phosphate glass by fused deposition modeling. Authors: Reda MohammedZakiaClémentStrutynskiaSimonKaserabDominiqueBernardaGregoryHausscMatthieuFaesseldJocelynSabatiereLionelCanionifYounèsMessaddeqbSylvainDantoaThierryCardinala

a – CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France

b – Centre d’Optique, Photonique et Laser (COPL), Université Laval, QC, Québec, Canada

c- CNRS, Univ. Bordeaux, UMS 3626 PLACAMAT, Pessac F-33600, France

d- Bordeaux University, TechnoShop Coh@bit platform, Bordeaux Institute of Technology, 15 Rue Naudet, Gradignan 33750, France

e- Bordeaux University, IMS Lab., UMR 5218 CNRS, 351 Cours de la Libération, Talence 33405, France

f- Bordeaux University, CNRS, CEA, CELIA, UMR 5107, Talence F-33405, France

 

Aditya Chandavarkar
Aditya Chandavarkar
Website
Aditya Chandavarkar is a established entrepreneur with business interests in manufacturing, innovative technology, training and consulting. Among other activities he the Co-Founder of Indian 3D Printing Network and is a subject matter expert on 3D Printing/Additive Manufacturing with good grasp of Additive Manufacturing trends in the Region including India, APAC, Middleeast and Africa.
3d printing additive manufacturing Fused Deposition Modeling Oxide glass Phosphate glass
Aditya Chandavarkar
  • Website

Aditya Chandavarkar is a established entrepreneur with business interests in manufacturing, innovative technology, training and consulting. Among other activities he the Co-Founder of Indian 3D Printing Network and is a subject matter expert on 3D Printing/Additive Manufacturing with good grasp of Additive Manufacturing trends in the Region including India, APAC, Middleeast and Africa.

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75