Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Desktop Metal launches new 316L stainless steel material for metal 3D printing system

News By AM Chronicle EditorFebruary 14, 20195 Mins Read
Impeller Angle 2
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

With even Space X using it to build the body of its new Starship to Mars, Stainless steel is experiencing a revival. While advanced alloys can provide unique yet niche applications, stainless steels like 316L are extremely versatile and – perhaps more importantly – very affordable. That is particularly true if the material is used in a MIM-based filament for such as those supported by Desktop Metal‘s studio system.

That is one of the reasons why the company, which is openly committed to making metal 3D printing more accessible, launched 316L stainless steel for its office-friendly metal 3D printing system for prototyping and low-volume production.

A fully austenitic steel (300-series steels contain nickel to achieve austenite crystalline structure  and are not hardenable by heat treatment and  essentially non-magnetic), known for its corrosion resistance and excellent mechanical properties at extreme temperatures, 316L is suited for applications in demanding industrial environments, including salt water in marine applications, caustic cleaners found in food processing environments, and chemicals in pharmaceutical manufacturing.

“The addition of 316L enables engineers to print metal parts for a wide range of applications, including engine parts, laboratory equipment, pulp and paper manufacturing, medical devices, chemical and petrochemical processing, kitchen appliances, jewelry and even cryogenic tools and equipment,” said Ric Fulop, CEO and Co-founder of Desktop Metal. “Teams are now able to iterate quickly on 316L prototypes, print complex geometries that are not possible with most manufacturing methods, and produce end-use parts cost-effectively.”

Steeling the scene

Early applications of 316L parts printed with the Studio System confirm the diverse and promising results across multiple industries.

One available case is the production of a combustion fuel nozzle for marine tankers by John Zink Hamworthy Combustion. The UHT Atomizer is a fuel oil atomizer for use with atomizing medium such as steam or air. It is typically installed in an HXG marine burner which is used on steam propulsion boilers on LNG tankers. The objective of the atomizer is to improve low load burner performance, thus allowing the burner to run on a lower fuel oil throughput, saving operational costs when the vessel is maneuvering in port. 316L stainless steel was a key material for the part due to its excellent mechanical properties at high temperatures. Printed with the Studio System, the atomizer can be radically redesigned to function in a more fuel-efficient manner than those produced through traditional metalworking means.

Desktop Metal 316L

Desktop Metal 316L
The UHT atomizer in operation.

“Unlike many of the parts that John Zink designs and manufactures, this UHT Atomizer can only be fabricated utilizing additive manufacturing. Design constraints of casting, machining and other methods that have bound our thinking for decades can be eliminated as additive manufacturing technology continues to evolve and progress,” said Paul Newman, General Manager at John Zink Hamworthy Combustion, UK.

Another key application case is a customized ring splint for medical use. Ring splints, a common medical device, are designed to immobilize or limit the range of motion of injured limbs. Ring splints are typically made of injection molded plastic in standard sizes and parts often break after a relatively short lifetime. Due to traditional manufacturing methods, finger splints cannot be customized to improve fit. Now, by 3D printing in 316L, ring splints can be custom-printed, on-demand to the desired size, with the added benefit of an aesthetic finish and increased durability.

Desktop Metal 316L

Ring Splint Hand 2

“Being able to 3D print medical grade steel parts like this finger splint, which is customized to the patient anatomy, offers many advantages as compared to previous fabrication methods that take longer and may have lower efficacy,” said Jim S. Wu, MD, Chief of Musculoskeletal Radiology and Intervention at Beth Israel Deaconess Medical Center, and Associate Professor at Harvard Medical School.

Finally, Desktop Metal demonstrated the use of its new material in the production of an impeller used in harsh environments. Impellers are an essential component of pumps to move fluid through systems. They require complex vanes to optimize pressures in the pump for different fluids and applications. With chemical impellers, 316L is the choice material for its chemical resistance and mechanical properties at extreme temperatures, such as those found in cryogenic, salt water, and petroleum pumps. The impellers are geometrically complex, with prototypes typically costing $1,000 or more to make by traditional formative methods. With the Studio System, this impeller was printed in 316L for $70.

“The oil and gas industry will be a major beneficiary of advances in metal 3D printing,” said Ahmad Khowaiter, Chief Technology Officer of Saudi Aramco. “As the world’s premier energy and chemicals company and an early investor in Desktop Metal we look forward to advancing the state of the art and developing next generation applications where additive manufacturing can leapfrog existing manufacturing methods.”

Steel to come

316L now joins 17-4 PH stainless steel in the Studio System’s materials library. With more than 30 materials in development, Desktop Metal plans to introduce additional core metals to its portfolio throughout 2019, including tool steels, superalloys and copper. “As innovative companies across multiple industries adopt metal 3D printing, its critical to help accelerate this growth by expanding the portfolio of desired materials,” said Fulop. “Our materials science team is pushing the boundaries to enable printing metal parts for a growing range of applications in as wide a material portfolio as possible. The introduction of 316L is another step on our path to fundamentally change the way metal parts are designed and manufactured.”

Source: 3dprintingmedia.network

e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
316L stainless steel 3d printing 3D printing material Desktop Metal Desktop Metal‘s studio system I3DPn Indian 3D Printing Network metal 3D printing system Studio System UHT Atomizer
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75