Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Institute for Stem Cell and Regenerative Medicine The tiny Suspended Tissue Open Microfluidic Patterning, or STOMP device, for tissue engineering studies.

    3D-Printed Device Advances Human Tissue Modeling

    May 27, 2025
    Palantir and Divergent

    Palantir and Divergent Form Partnership to Revolutionize On-Demand Advanced Manufacturing

    May 27, 2025
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    May 20, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Source: CEAD

    CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

    May 19, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Institute for Stem Cell and Regenerative Medicine The tiny Suspended Tissue Open Microfluidic Patterning, or STOMP device, for tissue engineering studies.

    3D-Printed Device Advances Human Tissue Modeling

    May 27, 2025
    Palantir and Divergent

    Palantir and Divergent Form Partnership to Revolutionize On-Demand Advanced Manufacturing

    May 27, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

BellaSeno Demonstrates Superior Biomechanical Properties of its 3-D Printed, Resorbable Scaffolds for Bone Reconstruction

News By AM Chronicle Editorial TeamJune 21, 20234 Mins Read
Slider Breast JKK9150 DxO scaled 1
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

BellaSeno GmbH, an ISO 13485-certified medtech company developing resorbable scaffolds using additive manufacturing technologies, today announced comparative data on the biomechanical properties of different polycaprolactone/hydroxylapatite bone reconstruction scaffolds. The results, presented at the 24th EFORT Congress in Vienna, Austria, demonstrate that BellaSeno’s established manufacturing process results in bone scaffolds that can withstand higher loads and longer stress cycles than those produced by competing technologies.

The current orthopedic gold standard for the treatment of large long-bone defects and non-unions typically is the diamond concept which involves the insertion of an osteoconductive structure (scaffold) to guide bone regeneration. To perfectly match the patient’s anatomy, several companies have used additive manufacturing (3D printing) to develop new, customized scaffolds to fulfill this demand of the diamond concept. These scaffolds are printed from resorbable materials such as polycaprolactone (PCL), polylactic acid, or composites of PCL and hydroxyapatite (HA) and are intended to hold the autologous bone graft in place. Selective laser sintering (SLS) and fused deposition modeling (FDM) are the most common methods for printing these medical scaffolds. There is an ongoing debate as to which technology is best suited to produce the most durable scaffolds. Depending on the required properties of a scaffold, BellaSeno is working with either SLS or FDM and has customized and fine-tuned the manufacturing process for both methods.

For the study, BellaSeno compared how the most common additive manufacturing processes (SLS and FDM) affect the biomechanical properties of polycaprolactone/hydroxylapatite (PCL/HA) scaffolds produced for bone regeneration. Standard lattice design triangular scaffolds (30 x 30 mm) were fabricated under optimized conditions from a PCL/HA composite of polycaprolactone with 4% hydroxyapatite by SLS and BellaSeno’s proprietary FDM technology. The scaffolds were then placed in a mechanical testing machine for high-precision axial compression-deformation testing. An increasing axial load was applied to the specimens for 1,000 cycles each, starting with 500 N, then 700 N, 1,000 N, and 1,100 N. The strain was measured in % proportional to the applied force.

For the FDM scaffolds, almost similar hysteresis strain curves were observed for the 500 N, 700 N, and 1,000 N axial tests without any scaffold fatigue. Only the application of 1,100 N resulted in permanent deformation and scaffold failure. In contrast, the SLS fabricated scaffolds tolerated much less axial load: The application of 700 N resulted in immediate failure of the scaffold structure with complete and permanent deformation.

“The data clearly demonstrate that our proprietary FDM-based technology has a decisive impact on the axial mechanical stability of the final product,” said Dr. med. Tobias Grossner, Chief Medical Officer of BellaSeno. “PCL/HA composite scaffolds produced by selective laser sintering have much lower mechanical integrity. Moreover, the overall waste of raw material is less for FDM compared to SLS.”

“To our knowledge, this is the first time such a comparison has been published,” said Mohit Chhaya, CEO of BellaSeno. “We are very pleased that our approach using FDM can be considered the more robust and more economical technology for the production of scaffolds for bone reconstruction. However, SLS still is an option for applications where we need higher design freedom, e.g., when overhanging structures are necessary. In these cases, it is superior to FDM.”

BellaSeno has established fully automated, proprietary manufacturing processes and facilities designed to meet the requirements of medical scaffolds ranging from soft tissue to bone. The Company´s manufacturing is ISO 13485 certified and allows for the highly scalable production of both custom-made and off-the-shelf sterile medical implants. Initial findings from ongoing Phase I studies demonstrate that BellaSeno’s resorbable implants are safe, well tolerated and support natural tissue growth.

###

About BellaSeno
BellaSeno GmbH was founded in 2015 and is headquartered on the BioCity campus in Leipzig, Germany, with a subsidiary in Brisbane, Australia. The Company is developing novel resorbable soft tissue and bone reconstruction implants made by additive manufacturing (3D-printing) under ISO 13485 certification. The Company has received substantial financial support from private investors as well as from the Saxony Development Bank (SAB), the European Fund for Regional Development (EFRE), Germany´s Federal Ministry of Education and Research (BMBF) and the Australian government. The Company is thereby co-funded from tax resources based on the budget adopted by the members of Saxon State Parliament.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

Original Source

3D Medical Printing 3d printing additive manufacturing BellaSeno GmbH Healthcare
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

LATEST FROM AM
Institute for Stem Cell and Regenerative Medicine The tiny Suspended Tissue Open Microfluidic Patterning, or STOMP device, for tissue engineering studies. News

3D-Printed Device Advances Human Tissue Modeling

May 27, 20254 Mins Read
Palantir and Divergent News

Palantir and Divergent Form Partnership to Revolutionize On-Demand Advanced Manufacturing

May 27, 20252 Mins Read
Credits: Outokumpu Insights

Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

May 22, 20252 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75