Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

AFRL engineer awarded Military Additive Manufacturing Lifetime Achievement Award

News By AM Chronicle EditorFebruary 16, 20248 Mins Read
Dr. Mark Benedict
Dr. Mark Benedict, Additive Manufacturing lead for the Air Force Research Laboratory’s Materials and Manufacturing Directorate and chief technical adviser at America Makes, is the 2023 recipient of the Military Additive Manufacturing 3D Printing Lifetime Achievement Award. (U.S. Air Force photo / Jonathan Taulbee)
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Dr. Mark Benedict, Additive Manufacturing lead for the Air Force Research Laboratory, or AFRL’s, Materials and Manufacturing Directorate and chief technical adviser at America Makes, was the 2023 recipient of the Military Additive Manufacturing, or MILAM, 3D Printing Lifetime Achievement Award. The award is granted for the consistent, distinguished service of an individual or group, and for making groundbreaking lifetime contributions with an enduring impact in the areas of additive manufacturing and 3D printing across the DOD.

“We’re tremendously proud to have Mark on our team,” said Dr. Charles Ormsby, AFRL division chief, Manufacturing and Industrial Technologies. “He is truly a world leader in additive manufacturing technology who transformed a research tool into a competitive advantage for our warfighters. I can’t think of anyone more deserving of this recognition.”

Dr. Blake Teipel, CEO of Essentium Inc. and the person who nominated Benedict for the MILAM award, recalled Benedict’s willingness to share his wealth of knowledge and experience when Essentium was a relatively new contractor in 2020.

“He immediately came and visited us for a deep-dive technical kickoff, bringing with him an immense curiosity and a wealth of experience,” Teipel said. “I couldn’t be more delighted that Dr. Benedict received this well-deserved award. His longstanding tenure as a thought- and technology-leader not only within the United States Air Force and AFRL communities, but also for the entire additive manufacturing industry, is well-known.”

Benedict, who has been with AFRL’s Materials and Manufacturing Directorate since 1997, said he was fascinated by materials science even before he knew what it was. He recalled recently finding some old homework assignments from kindergarten, while helping with spring cleaning at his mother’s home.

“It was basically six pages of questionable penmanship and interesting drawings,” Benedict said. “But it made me realize that even then, I wanted to know how things were made.”

As part of a military family, Benedict traveled a lot. His family eventually settled in Ohio when his father was posted to his final assignment at Bratenahl Naval Base near Cleveland. After high school, Benedict decided to stay in Ohio to attend the University of Dayton, where he earned his Bachelor of Science in chemical engineering. It was also during this time that he began working at AFRL in the manufacturing research branch.

“I fell in love with the University of Dayton and the campus,” Benedict said. “I especially liked the closeness to Wright-Patterson Air Force Base. Since I came from a military family, that kept me in the orbit of the services, and I was cognizant that was a career path.”

After attending the University of Dayton, Benedict attended Wright State University through a DAGSI scholarship, where he earned his Bachelor’s and Master of Science degrees in material science. He continued to work at AFRL during that time, and eventually earned his doctorate in metallurgy and material science from Cambridge University.

“I started out at the Manufacturing Research branch and then bounced around a bit working in the Polymers branch, and the Thermal Materials branch before eventually landing back in manufacturing research,” Benedict said. “The manufacturing directorate gives you so many neat problems to work on. Except for my time at Cambridge, I have been here ever since.”

About 11 years ago, Benedict was asked to take the lead with additive manufacturing at AFRL.

“Because of my background with materials science, computers and practical computational work, it was a good fit,” he said. “Ever since then, I’ve been really enthusiastic about what we can use that technology for.”

Over the years, Benedict has seen additive manufacturing mature from something he and his son used to create plastic figurines to a productive, go-to solution for manufacturing critical Air Force systems.

Most systems are composed of thousands of parts, but inevitably, one will break and need to be replaced. In the case of Air Force systems, sourcing that one part is often difficult, costly and time consuming either due to the limited availability of the part or the age of the system, Benedict explained. This can potentially render a system inoperable for years.

“Some of these systems have been flying for much longer than you or I have been treading this planet,” said Benedict. “The B-52 is over 75 years old at this point, and the companies that originally made it are long out of business. Additive manufacturing eventually gave us the means to reverse engineer these parts.”

Initially, additive manufacturing used mostly plastics for printing, which could be used for demonstration models, fit checks and sometimes tooling for manufacturing. Benedict said the inflection point was when metal processes began to mature.

“When the metal process started to become faster, more affordable and more dependable, we started investing a lot of money in assessing the quality,” Benedict said. “Is this going to be an air-worthy part? Initially, the answer was no. Currently, there isn’t a rocket that goes up today that doesn’t have a large number of parts produced by additive manufacturing.”

In fact, just last year, a company flew a rocket that is, by weight, 85% printed parts.

“Not only were the engines printed, which has become kind of the go-to, but also the pressure tanks, something we never thought we could do, were printed,” said Benedict.

During his time at AFRL, Benedict has worked on numerous and varying projects but said that there are two in particular that stand out for him. The first is the Pacer Edge program, which was run by the Air Force Lifecycle Management Center engines group. The goal of Pacer Edge was to learn how to leverage 3D printing and make parts in their own depots.

“To achieve airworthiness, you need to know everything there is to know about the process, not just, is it the right shape. We spent the next three and a half years learning how to print high-quality parts,” said Benedict.

One of the first successful airworthy parts they produced was an oil sump cover for the F-16. Benedict said not only was the casting for this part very hard to find, but they also only needed about four of them per year, enough to ground four F-16s.

“No one wants to make four of anything,” said Benedict. “There is no profit for industry to do that. It can take two years to get some of these parts. Using additive manufacturing, it now takes only a month from the time the part is ordered, and it is cost neutral.”

Another memorable program Benedict worked on is the acceleration of large-scale additive manufacturing, or ALSAM. In this project, which he started earlier in his career, Benedict championed the need for an open-source additive manufacturing machine.

“The way that these printers work is, you give them a CAD file and it spits out a geometry,” said Benedict. The machine does what it does, and you don’t have any understanding of how it got there.”

This isn’t ideal for scientists and engineers who need to be able to create reproducible experiments, Benedict said. So, over a seven-year period, AFRL collaborated with GE to develop a printer that was fully open and accessible to scientists.

“We control every movement of the laser, understand every bit of gas flow and powder recoating,” said Benedict. “I think that has been a real game changer for the labs. We did this through America Makes and now there are six of these printers out in the wild, which allows our partners to do deep science experiments and understand the process.”

About six years ago, Benedict transitioned to the role of chief technical adviser at America Makes, which he said involved more investment planning and strategic alignment of resources with future Air Force needs, maturing the technology and getting it to airworthy status.

“That’s where most of our pain points come from when supplying equipment for, or creating, new air vehicles,” said Benedict. “It takes a lot of work both inside and outside of AFRL, partnering with industry, academia and the other services as well as international work to get all our investments and research goals aligned.”

Benedict said receiving a lifetime achievement award has given him an opportunity to look back, which is something he doesn’t often do.

“I’m a very forward-focused person. It was sort of humbling to look back on all that I have been a part of,” said Benedict.

Among other awards and honors Benedict has received, he was named an AFRL Fellow in 2023. This honor represents 0.3% of the AFRL professional technical staff and has only been granted to 251 AFRL recipients since the program began 37 years ago. Benedict is also the recipient of the 2020 Director’s Award (Senior Individual), and the 2023 Director’s Award (Team) as part of the Hypersonics Team.

Benedict was recently named Senior Scientist, Convergent (Digital) Manufacturing, at AFRL.

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com 

Original Source

3d printing additive manufacturing AFRL award Military
AM Chronicle Editor

LATEST FROM AM
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read
Novel Magnetic 3D-Printed Pen News

Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

June 3, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75