Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Image Credit: COBOD

    Colorado Pioneers Fire-Resistant Homes with 3D Printing Technology

    August 25, 2025
    First RAF manufactured 3D printed component fitted to 29 Sqn Typhoon

    First Royal Air Force Manufactured 3D Printed Component Fitted to 29 Sqn Typhoon

    August 11, 2025
    Impact Innovations Reaches 100 Cold Spray System Installations in Over 30 Countries

    Impact Innovations Hits 100 Cold Spray Machine Installations across 30+ Countries

    July 30, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Image Credit: COBOD

    Colorado Pioneers Fire-Resistant Homes with 3D Printing Technology

    August 25, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

3D-Printed Medical Drills Keep Bone Cool During Surgery

News By AM Chronicle Editorial TeamSeptember 22, 20176 Mins Read
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

[vc_row][vc_column][vc_images_carousel images=”1741,1742,1743,1740″ img_size=”full” onclick=”link_no” speed=”4000″ autoplay=”yes” hide_prev_next_buttons=”yes”][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]The medical profession has, with certain exceptions, tended to adapt commercially available instruments that have been developed for drilling other materials. A drill bit consists of a shank which is used to couple the piece to the chuck of the surgical hand-piece, and flutes which channel bone chips and debris (swarf) away from the machining face and cutting edges.

The operational environment for a surgical drill bit, however, is unique and very unlike that experienced by engineering drill bits used in manufacturing, or traditional nonbiological engineering such as the construction industry. Bone is a complex anisotropic, porous and viscoelastic composite that is also nonhomogenous, both in material properties as well as geometry. Cortical bone is a relatively poor conductor of heat, which is caused by drilling during surgeries due to the shear deformation of bone, friction between the bone chip and the rake face as well as friction between cutting edge and underlying bone. It has been estimated that approximately 60 percent of the heat energy generated during drilling is dissipated by bone chips, which is substantially less than the 80 percent predicted to be removed by the chips during drilling of metals.

As a result, temperatures can rise above 50°C, which can result in the necrosis (death) of the bone, a phenomenon termed osteonecrosis. The magnitude of this temperature rise is determined by a number of factors, including drill geometry and diameter, rotational speed, feed-rate, axial thrust force, initial drill bit temperature, and internal or external cooling. To keep the temperature low, surgery is usually performed iteratively; i.e. the drilling process is repeatedly interrupted in order to keep the temperature as low as possible.

Cooling the drill would be the better alternative, and closed-loop and open internal cooling systems are available but are primarily limited to orthodontic and dental applications. Since cooling the tool may cause fluid to enter the wound, conventional tools with a cooling system are usually avoided.

Creating Internal Cooling Channels
In an effort to develop surgical drills capable of cutting bone without causing thermal-induced osteonecrosis, the Institute of Production Engineering and Machine Tools (IFW) at the Leibniz Universität Hannover, Germany turned to Toolcraft, a manufacturer of precision parts, assemblies, molds and injection-molded parts.

Toolcraft suggested creating internal cooling channels through metal laser melting to allow the coolant to flow inside the tool—along the helix and back to the toolholder—without entering the wound. Although chances of breakage are slim, the drill bit is reportedly the most frequently broken surgical instrument and the possibility cannot be ruled out. According to the company, using water as coolant ensures no injuries are caused in case of tool breakage.

Toolcraft also developed a nonrotating pre-spindle attachment with an inflow and outflow function for the coolant. A continuous supply of coolant is ensured by the attached coolant tank and pump, the company explains.

The internally-cooled prototype was modelled on a conventional bone drill with a diameter of 6 mm. Surgical twist drill bits are available in a wide variety of configurations and sizes, with diameters typically ranging from 0.5 mm to several millimeters. According to Toolcraft, diameters from 5 mm are currently possible to produce using laser melting technology.

Toolcraft and the IFW decided to keep the drill’s geometry to make it easier for users to adapt to the new tool. The internal circular cooling channels with a diameter of 1.2 mm take the thermal energy away from the cutting edge, while flow and return pipes ensure a continuous flow of coolant. bHorizontal drilled holes were added which link the cooling circuit to the drill for the coolant supply and removal. To attach the manifold there is a groove for a circlip.

At the outset of the project, the engineers calculated the cooling capacity in terms of volumetric flow rate, temperature and thermal capacity of the coolant. The project team then developed a method for bringing a closed cooling circuit into the tool substrate while maintaining tool stability and ensuring that the tool was suitable for performing the required processes.

The drill is made of the biocompatible material 1.4404, a corrosion-resistant, austenitic stainless steel (ASTM 316/ 316L). The shape of the drill and the internal cooling channels were designed by Toolcraft using SolidWorks, and the simulation was done by Schmidt WFT in Nuremberg, Germany, using Siemens NX software.

Using an M2 cusing multi-laser machine from Concept Laser, the drill bit including the internal cooling channels was additively manufactured, followed by grinding. To create good chip clearance, the required surface quality as well as sharp cutting edges, the main and secondary cutting edges were ground on a centerless cylindrical grinding machine.

Tests Show a Decrease in Temperature of Up To 70 Percent
Using a drill with a diameter of 6 mm and water as coolant, the IFW performed a diverse range of drilling tests and measured the process temperature in artificial and bovine bone. In doing so, they measured reference temperatures at higher and lower feed rates, with the cooling system turned on and off. Experience has shown that increasing feed rates decrease the maximum temperature when drilling bones.

At a high feed rate of 0.35 mm/rev (0.014 ipr) and a cutting speed of 2 m/min. (78.7 ipm) on an artificial bone made of Nylacast Polyactal (POM-C), an engineered plastic, the tests show that the new drill significantly reduces the temperature produced. While the drill without cooling did not exceed the critical temperature of 50°C (122°F) due to the high feed rate, the use of internal cooling kept the temperature at maximum 35°C (95°F) with a cooling agent temperature of 20°C (68°F) and at maximum 25°C (77°F) with a cooling agent temperature of 1°C (33.8°F) (see Figure 3.).

When the feed rate is decreased to 0.07 mm/rev (0.0028 ipr), the test showed the same results for the internally cooled drill, but caused temperatures to rise above 50°C (122°F) in less than 100 seconds for the conventional drill. (See Figure 4.)

Thanks to the ability of the internal cooling system to compensate for increases in temperature, low feed rates no longer lead to higher temperatures, and the risk of excessively high process temperatures which put bones at risk of damage is eliminated. This means that the technology could also be beneficial in a wide variety of other areas, such as the manufacture of saws, Toolcraft says.[/vc_column_text][/vc_column][/vc_row]

AM Chronicle
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

AdditiveManufacturing DMLS Medical Metal Toolcraft
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels Case Studies

Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

August 25, 20253 Mins Read
Credits: WFIRM News

WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

August 25, 20252 Mins Read
Image Credit: COBOD News

Colorado Pioneers Fire-Resistant Homes with 3D Printing Technology

August 25, 20252 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75