Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Insights

3D Bioprinting for Space

Insights News By AM Chronicle Editorial TeamDecember 25, 20235 Mins Read
3D Bioprinting for Space 01
NASA astronaut Jasmin Moghbeli swaps components inside the BioFabrication Facility (BFF). NASA
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Imagine someone needs a heart transplant and scientists take cells from that person to create an entire new heart for them. Research on the International Space Station is helping to bring that dream closer to reality.

The process of 3D printing (also known as additive manufacturing) enables the design and production of one-of-a-kind items made of plastic, metal, and other materials, including tools, equipment, and even buildings. Biological printing or bioprinting uses living cells, proteins, and nutrients as raw materials and has the potential to produce human tissues for treating injury and disease and to create entire organs for transplants.

In Earth’s gravity, bioprinting requires a scaffold or other type of structure to support tissues, but in the near-weightlessness of the space station’s orbit, tissues grow in three dimensions without such support. Redwire Corporation developed the BioFabrication Facility (BFF) as a part of the larger goal of using microgravity to bioprint human organs. Popular Science magazine recently awarded the BFF a 2023 Best of What’s New Award in the Health Category. These awards, handed out since 1988, recognize “groundbreaking innovations changing our world,” according to Popular Science, and “radical ideas that are improving our everyday lives and our futures.”

A current investigation, BFF-Cardiac, uses the BFF to evaluate the printing and processing of cardiac tissue samples. Cardiovascular disease is the number one cause of death in the United States. Adult heart tissue is unable to regenerate, so damaged heart tissue is mostly replaced with scar tissue, which can block electrical signals and prevent proper cardiac contractions. This investigation could support the development of patches to replace damaged tissue – and eventually the creation of replacement hearts. The work represents a big step toward addressing the significant gap between the number of transplant organs needed and available donors.

3D Bioprinting for Space 02
The first human knee meniscus successfully 3D bioprinted in orbit using the BioFabrication Facility. NASA

The BFF-Meniscus investigation and the follow-up BFF-Meniscus-2 investigation resulted in the first successful bioprinting of a human knee meniscus in orbit using the space station’s BioFabrication Facility, announced in September 2023. Musculoskeletal injuries, including tears in the meniscus, are one of the most common injuries for the U.S. military and this milestone is a step toward developing improved treatments on the ground and for crew members who experience musculoskeletal injuries on future space missions. After initial printing and a period of growth in microgravity, the tissues returned to Earth for additional analysis and testing.

The Russian state space agency ROSCOSMOS launched equipment in 2018, 3D MBP, that included a magnetic printer called Organ.Aut. A series of experiments from 2018 through 2020 showed that this approach could create tissue constructs, helping to pave the way for additional research on producing artificial organs.

Bioprinting technology also could create artificial retinas to help restore sight for the 30 million people worldwide who suffer from degenerative retinal diseases. One way to manufacture artificial retinas is a technique that alternates layers of a light-activated protein and a binder on a film. On Earth, gravity affects the quality of these films, but researchers suspected that films created in microgravity would be more stable and have higher optical clarity. Protein-Based Artificial Retina Manufacturing is one of several investigations by LambdaVision Inc. in partnership with developer Space Tango Inc. to develop and validate space-based manufacturing methods for artificial retinas. The company has consistently manufactured multiple 200-layer artificial retina films in microgravity and now is working to commercialize its hardware and strategies for development of other therapies and drugs.

3D Bioprinting for Space 03
The Protein-Based Artificial Retina Manufacturing experiment hardware on the space station. NASA

Bioprint FirstAid, a study from ESA (European Space Agency) and the German Space Agency (DLR), demonstrated the function of a prototype for a portable handheld bioprinter that creates a patch from a patient’s own skin cells. Space causes changes in the wound healing process, and such customized bandages could accelerate healing on future missions to the Moon and Mars. Using cultured cells from the patient reduces the risk of rejection by the immune system, and the device offers greater flexibility to address wound size and position. Because the device is small and portable, health care workers could take it almost anywhere on Earth. The investigation showed that the device works as intended in microgravity, and researchers are studying the space-printed patches and comparing them with samples printed on the ground before taking the next step.

3D Bioprinting for Space 04
Sample patches printed using simulant inks and the hand-held tool for Bioprint FirstAid. NASA

Bioprinting in microgravity also could make it possible to produce food and medicine on demand on future space missions. Such capabilities would reduce the mass and cost of materials needed at launch and help maintain the health and safety of crew members throughout a mission.

The 3D Printing In Zero-G investigation, which started in 2014, demonstrated that the process of 3D printing with inorganic materials such as plastic worked normally in microgravity.1 3D printing could reduce the need to pack costly spare parts on future long-term missions and help solve the problem of trying to predict every tool or object that might be needed on a mission. With the addition of bioprinting capabilities, crews eventually may be able to 3D print almost anything they need – from a replacement screwdriver to a replacement knee.

John Love, ISS Research Planning Integration Scientist

Source: 1 Prater TJ, Bean QA, Werkheiser N, Grguel R, Beshears RD, Rolin TD, Huff T, Ryan RM, Ledbetter III FE, Ordonez EA. Analysis of specimens from phase I of the 3D Printing in Zero G Technology demonstration mission. Rapid Prototyping Journal. 2017 October 6; 23(6): 1212-1225. DOI: 10.1108/RPJ-09-2016-0142.

The article has been republished from NASA- Blog : https://www.nasa.gov/missions/station/iss-research/3d-bioprinting/ 

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

3d bioprinting NASA space
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75