Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Insights

What Is the Strongest 3D Printer Filament?

Insights By AM Chronicle EditorNovember 24, 20206 Mins Read
shutterstock 510871810 scaled e1606166232167
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

While 3D printing can be fun, the produced parts can turn out weak and not fit for purpose. Often, this is the result of using standard materials that aren’t designed for strength and endurance. The solution: Use a strong filament! Strong filaments can expand the possibilities of 3D printing, as you can print end-use parts for small projects without the fear of them breaking.

In this article, we’ll be exploring three of the strongest types of filament. Before that, though, we’ll detail what strength means in terms of filament materials.

What Does Strength Mean?

We'll measure filament strength in pounds and PSI (Source: Airwolf 3D)
We’ll measure filament strength in pounds and PSI (Source: Airwolf 3D)

Various factors can measure filament strength, but we’ll mostly be using tensile strength (stress before something breaks) for this article. We’ll indicate each filament’s tensile strength using pounds or pounds per square inch (PSI).

Despite the clear number of pounds that a filament can handle, there’s still a margin of error, depending on how a part was printed. We’ve gathered research from multiple sources to ensure that these three materials are the strongest out there.

You should also recognize that the material itself isn’t the only element of a printed part’s strength. Design, post-processing, and printing settings also alter a part’s strength, so be sure to make, print, and process your parts optimally.

Polycarbonate

Polycarbonate filament can lift an impressive 685 pounds (Source: Thomas Sanladerer via YouTube)
Polycarbonate filament can lift an impressive 685 pounds (Source: Thomas Sanladerer via YouTube)

According to multiple manufacturers and reviewers, polycarbonate (PC) is considered the strongest filament out there. In particular, PC can yield extremely high-strength parts when printed correctly with an all-metal hot end and an enclosure.

By the Numbers

Airwolf 3D, after many filament tests, concluded that PC is the king of desktop 3D printer filaments. They were able to hang up to 685 pounds on a hook printed in PC and found that the material had a tensile strength of 9,800 PSI. In contrast, the same part printed in PLA could only handle 285 pounds.

Using a similar test, MatterHackers studied this type of filament’s tensile strength as well as a variety of other materials. They were able to hang an average of 409 pounds on a PC hook while PLA parts had a significantly weaker average of just 154 pounds.

Lastly, noted 3D printing YouTuber Thomas Sanladerer reviewed some PC filament and gave very positive feedback on the material’s strength.

Printing

Perhaps unsurprisingly, PC doesn’t print too well and doesn’t handle overhangs or fine detail the way other filaments do.

PC mainly comes in a transparent color and has excellent thermal resistance as well as impact resistance, according to Rigid.Ink. You’ll also need to print it at high temperatures, so make sure you have an enclosed printer and an all-metal hot end.

  • Maximum hang strength: 685 pounds (using Airwolf 3D’s test)
  • Pros: Super strong, great thermal and impact resistance
  • Cons: Bad at handling overhangs and detail, requires enclosure and all-metal hot end, limited colors

Nylon

Nylon filament can handle 485 pounds (Source: Airwolf 3D via YouTube)
Nylon filament can handle 485 pounds (Source: Airwolf 3D via YouTube)

Next, we have nylon, another one of the most robust desktop 3D printer filaments out there. Nylon is a close second in strength to polycarbonate, but still crushes the rest of the competition like PLA and ABS.

By the Numbers

A hook printed in nylon (910) filament had a tensile strength of 7,000 PSI, while the same hook in ABS only had a strength of 4,700 PSI, according to Airwolf 3D. Airwolf 3D also found that a clip printed in nylon filament was capable of holding 485 pounds.

MatterHackers found similar results and observed that a hook printed in their NylonX filament, on average, could hold 364 pounds before breaking. Rigid.Ink also reviewed some nylon filament and gave it a four out of five rating in strength and a five in durability. For some comparison, PLA had a rating of three for strength and durability.

Printing

Nylon is a little bit easier to print in than PC, but this filament is still no PLA. Nylon filament is fairly hygroscopic, so it has to be dry and requires a somewhat high printing temperature of 220-270 °C. This material is prone to mild warping but also is impact-, fatigue-, and heat-resistant.

  • Maximum hang strength: 485 pounds (using Airwolf 3D’s test)
  • Pros: Impact-resistant, fatigue-resistant, heat-resistant, easier to print than PC
  • Cons: Hygroscopic, warps, requires very high hot end temperature

Composites

Carbon-fiber-infused nylon can hold 349 pounds (Source: MatterHackers via YouTube)
Carbon-fiber-infused nylon can hold 349 pounds (Source: MatterHackers via YouTube)

Lastly, composite filaments, although not one single material, can be extremely strong. Composites are filaments with certain additives that influence the filament’s properties to enhance strength. These filaments typically have the word “pro,” “reinforced,” or “infused” in their names, as they’re usually a mix of different materials.

For this reason, we can’t tell you where composite filaments stand compared to the previous two materials. Some composites, such as Carbonyte, can compete with nylon filaments in terms of strength, while some composites are weaker.

It all depends on what the composite filament is made up of. The strong ones are usually a high-strength material like nylon infused with another high-strength material like carbon fiber or glass.

Speaking of carbon fiber, it too is a very strong filament by itself and is sometimes used to 3D print bikes. However, certain composite filaments are stronger than many pure carbon-fiber filaments, so it didn’t make the top three, but it does deserve a special mention as a composite filament.

By the Numbers

We’ll use carbon-fiber-infused nylon and glass-infused nylon filaments as examples. MatterHackers determined that hooks printed in these materials could hold an average of 349 and 268 pounds, respectively.

Rigid.Ink gave glass-infused nylon filament a four out of five rating in strength and a five in durability. They also gave carbon-fiber-infused nylon a five out of five on both strength and durability. For comparison, PLA and ABS both had a three in strength.

Printing

Composites vary in how they should be printed, but they tend to be relatively similar to their base material. Strong composite filaments are generally based out of nylon, so you’ll need to print in some pretty high temperatures. These filaments are also pretty expensive.

  • Maximum hang strength: 349 pounds for carbon-fiber-infused nylon, 268 pounds for glass-infused nylon (using MatterHacker’s test)
  • Pros: Combination of materials, strong
  • Cons: Expensive, require high printing temperatures
e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3d printing additive manufacturing composite nylon Polymer
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75