Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    May 20, 2025
    The new standard in 3D concrete printing: Saint-Gobain Weber certified by Kiwa!

    The new standard in 3D concrete printing: Saint-Gobain Weber certified by Kiwa!

    May 20, 2025
    Image credit: Philips

    Philips Unveils 3D-Printable Components for Product Repair, Promoting Sustainability

    May 19, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Source: CEAD

    CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

    May 19, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Insights

Standard Practices for Classification of Additively Manufactured Parts

Insights By Dr. Khalid RafiFebruary 10, 20235 Mins Read
a markforged metal 3d printer completes an m4a1 carbine 380013 1600
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Additive manufacturing provides endless potential to revolutionize manufacturing, from creating complex structures to producing personalized products. It is crucial to demonstrate that these parts are safe and reliable for end-use applications. The parts need to qualify for use according to the requirements applicable to the intended use. However, the qualification requirements applicable for one part may not be the same for another part. Therefore, the parts need to be classified based on some criterion so that qualification requirements can be created accordingly. To createsuch a criterion,it is important to understand the intended function of the part: whether the part is safety critical or mission critical, the chances of failure of the part, and what would be the consequence if the part fails.

The part classification helps to determine an appropriate level of process control, qualification, and inspection. Based on the consequence of failure, parts can be grouped into different classes, and proper procedures that apply to each class can be developed. Two standards provide guidance and requirements in classifying additive manufactured parts; ASTM F3572 and NASA STD 6030. Although these standards are developed specifically for use in Aviation and Space applications, the modalities can also be applied to other industry sectors.

ASTM F3572

This standard practice provides the general principles in classification of additively manufactured parts used in aviation produced by all the AM technologies defined in ISO/ASTM 52900. This practice establishes a consistent methodology to define and communicate the consequence of failure associated with AM aviation part. The same methodology could be used for other industry sectors by adequately identifying the risk associated with the field of use. Four part classes are established in this standard. The parts are classified as A, B, C, and D based on consequence of failure levels as High, Medium, Low and Negligible or No effect, respectively

Class A – High refers to a part whose failure can directly affect the safe operation of the flight

Class B- Medium refers to a part whose failure indirectly affects the safe operation of the flight

Class C- Low refers to a part whose failure has less impact in the operational and functional capabilities

Class D- Negligible or No impactrefers to a part whose failure has no impact in the regular operation of the flight

This standard can be used to establish specific methods of compliance but should refer to the original regulations.The standard allows a cognizant engineering organization to assign part classification based on the consequence of part failure. The potential of this standard is that it allows for every additive manufactured part design in aviation to be assigned a classification that can drive all aspects of the part life cycle.

NASA STD 6030

NASA STD 6030establishes the additive manufacturing requirements for spaceflight systems. The standard covers all aspects of AM processes from feedstock to qualification and process control. Section 4.3 of this standard defines the classification of AM parts. The part classification system uses a two-tier approach based on relative risk;

Primary Classification based on the consequence of failure.

The parts are classified as Class Awith high consequence of failure, Class Bwith consequence of failure falling short of catastrophe, and Class C,with negligible consequence of failure. The considerations in determining a part to be categorized under these classes are listed in Table 1.

 

Class A Class B Class C
·         High Consequence of Failure, if failure of the part leads to a catastrophic, critical, or safety hazard and/or the part is defined as mission critical by the program or project.

 

·         more stringent controls on the AM process to manage risks associated with their use

 

·         Shall not be made from polymeric materials, be fasteners, contain printed threads

·         Part failures falling short of catastrophic failures but cause significant delays due to failure

·         To be aerospace-quality parts of high quality

·         Shall not be fasteners and contain printed threads

Negligible consequence of failure.

Failure of part does not:

·         lead to any form of hazardous condition.

·         eliminate a critical redundancy.

·         serve as primary or secondary containment.

·         cause debris or contamination concerns

Table 1: Considerations for part classification based on consequence of failure

Secondary Classification based on combination of structural demand on the part and the risk associated with AM implementation for the part.

For Class A and Class B parts based on the primary classification, a secondary classification is assigned according to its structural demand and AM risk. Determining how high are the structural demands such as the stress and how high are the risks due to the AM design or build process are critical in the classification of a part.

The secondary classificationsfor a Class A part aredesignated as A1, A2, A3, or A4. If the structural demand and the AM risk for a Class A part is High, then the secondary classification for that part is Class A1.Similarly, secondary classification for a Class B part is designated as B1, B2, B3, B4. Table 2 shows secondary classification for Class A and Class B parts based on the combination of structural demand and AM risk.

Secondary classification factors Structural Demand High High Low Low
AM Risk High Low High Low
Class Class A A1 A2 A3 A4
Class B B1 B2 B3 B4

Table 2. Secondary part classification for Class A and Class B parts

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

3d printing additive manufacturing ASTM certification standards
Dr. Khalid Rafi

LATEST FROM AM
Credits: Outokumpu Insights

Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

May 22, 20252 Mins Read
World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture News

World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

May 22, 20254 Mins Read
Why Bioprinting Innovations can elevate healthcare and industrial AM Insights

Why Bioprinting Innovations can elevate healthcare and industrial AM

May 21, 20255 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75