Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Insights

How 3D Bioprinting Could Help Usher In Era Of Personalised Medicine

Insights By AM Chronicle EditorNovember 20, 20205 Mins Read
IMG 5412 Cellink e1606180923946
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

3D BioPrinting new skin to heal scars or damaged tissue is no longer a trope of science fiction, but part of a new wave of medtech.

Ever since 3D printing became a reality, the idea that human tissue could be printed – like we would print our boarding pass for a flight – has fascinated engineers and biologists alike. From a practical sense, it could allow for tissue production in a place as small as a local doctor’s office, but in an even more science-fiction-like way it was seen by some as a tool in the drive for transhumanism.

Organs with microchip implants and printing functioning human hearts to bypass donor lists are among some of the possibilities talked about in this field. The technology is still a while from achieving these heights in 2020, but not as much as you might think.

One of the most high-profile companies working in this space is Cellink. Founded four years ago by 31-year-old entrepreneur Erik Gatenholm, the company’s 2017 IPO was one of the fastest on record and it just recently achieved a $1bn valuation.

While starting off as a developer of ‘bioink’ for 3D bioprinters– a natural or synthetic polymer selected for its biocompatible components – the company went on to build its own bioprinter starting at around $5,000 in price. By comparison, other 3D bioprinters at the time were upwards of $300,000 each.

Noticing that there was an underdeveloped market in bioink four years ago – despite there being early-stage, large manufacturers of bioprinters – Gatenholm and two colleagues stumbled upon a material developed at Chalmers University of Technology in Sweden. This material, he said, was an ideal culturing environment for cells and eventually found a way to use it as bioprinting filament.

Democratising an industry

Gatenholm said that the early days of Cellink showed that despite there being a lot of interest in bioprinting, convincing partner companies to come on board and buy into bioink was a major challenge.

“The problem at that point was that the printers were so expensive,” he said. “So if you wanted to get into bioprinting, you had to pay, like $200,000. Quite frankly, not many laboratories around the world have that type of funding for a very, very innovative application.

“So we decided to democratise the entire industry and we came out with a printer that that costs $5,000. And that really changed everything for scientists because, all of a sudden, you had hundreds of laboratories around the world that had heard about bioprinting, but they just didn’t have the funding.”

Behind this driving down in cost, he added, was a revolution underway among more established 3D-printing companies such as MakerBot and Ultimaker, which were producing cheaper printers using more affordable components and more efficient resolution software. Using their platforms, Cellink looked to replicate this shift in the bioprinting world.

Role in Covid-19 research

Right now, Cellink’s bioprinting products are used by about 1,800 labs worldwide, many of which are working in basic applied research that could be the first step of many towards future bioprinting breakthroughs.

More recently, the company was included as part of a European research consortium called Triankle, which aims to develop regenerative therapies in the form of 3D-printed implants for the regeneration of ankle joint tissues. The €5.9m project has some high-profile partners, including footballing giant FC Barcelona.

But perhaps most pressing, bioprinting has become a new tool in research efforts to understand how Covid-19 impacts the human body. Gatenholm said that while 3D printing has proven itself to be “very, very useful” during the pandemic for the production of nasal swabs and other testing kits, bioprinting is a more complicated process.

One area, however, where Gatenholm has seen bioprinting really take off during this pandemic is in the printing of parts of lung tissue. By growing basic versions identical to normal human lungs, researchers can better understand in the lab how Covid-19 impacts their function.

“We have a few collaborators and customers who are working on [this area of research] specifically,” Gatenholm said. “The Technical University of Berlin is doing work with lung tissue specifically, and also looking into how they can apply that model for Covid-19 research.”

Bioprinting in space

In the future, with hopes that Cellink’s bioprinters could one day make it into the offices of doctors across the world, Gatenholm sees the area of personalised medicine as a point where his industry could really take off. Already, researchers are exploring the potential for technologies such as the gene-editing tool CRISPR-Cas9 within bioprinting.

Not only that, but bioprinting is already making headway in space. As recently reported, two 3D bioprinting systems have already made the journey to the International Space Station to better understand how the technology works in microgravity.

So far, it has been found that bioprinting tissue in space has some advantages over that on Earth – noticeably that it’s possible to create more intricate and complex structures. If humans are to live on the moon and further into the solar system, personalised bioprinting could be crucial when you find yourself millions of kilometres from the nearest doctor.

“Personalised medicine is an area that we’re very active in,” Gatenholm said, “whether that’s printing single cells that can be sequenced for patient-specific cancer cells or if it’s printing patient-specific cancer tumours that can then be used for developing new drugs and treatments. Personaliaing the medical aspect; that’s going to be for the future.”

Article Credit: Siliconrepublic.com

e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3d bioprinting 3d printing 3D printing technology additive manufacturing Medical
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75