Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    NAMI Partners with Ministry to Launch Saudi Arabia’s Advanced Manufacturing Centre

    May 30, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d

    Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

    June 5, 2025
    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    New 3D Printing Technology Enables Dual-Material Creation from Single Resin

    June 5, 2025
    Novel Magnetic 3D-Printed Pen

    Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

    June 3, 2025
    Caption:Researchers have developed a resin that turns into two different kinds of solids, depending on the type of light that shines on it: Ultraviolet light cures the resin into a highly resilient solid, while visible light turns the same resin into a solid that is easily dissolvable in certain solvents. Credits:Credit: Courtesy of the researchers; MIT News

    New 3D printing method by MIT enables complex designs and creates less waste

    June 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Case Studies

3D printing in Space: Windform LX 3.0 helped Portland State Aerospace Society’s OreSat0 CubeSat Get to Orbit

Case Studies By AM Chronicle Editorial TeamMarch 9, 20237 Mins Read
Windform LX 3.0 helped OreSat0
OreSat0 with solar modules and deployed tri-band turnstile antenna. Courtesy PSAS
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

3D printed components were manufactured by CRP USA for the Portland State Aerospace Society’s OreSat0 CubeSat, Oregon’s first satellite, deployed into low earth orbit in March 2021 and successfully operating since then. A turnstile antenna assembly, a star tracker camera lens and sensor assembly, and a battery assembly were all 3D printed out of Windform LX 3.0. These assemblies all met the extreme vibration, outgassing, and thermal performance requirements for low earth orbit.

3D printing in Space: An introduction

The small satellite or “nanosatellite” revolution is here. Kilogram-class satellites, like CubeSats, now have functionality that were only available in larger 100 to 1,000 kg class satellites. Recently, 3D printing has helped speed up this revolution, especially in universities. CubeSats have been  launched by dozens of countries, universities and companies all around the world. And the state of Oregon joined them recently thanks to the Portland State Aerospace Society (PSAS) that built OreSat0, their very own artisanally hand-crafted CubeSat system, currently in low Earth orbit. This achievement was possible thanks to their use of Windform LX 3.0 composite material and industrial 3D printing in their most critical subsystems.

The OreSat bus project

The Portland State Aerospace Society is an open source, interdisciplinary student aerospace project at Portland State University in Portland, Oregon, with collaborators at most other Oregon universities. They make sophisticated amateur rockets, small liquid fuel rocket engines, and CubeSat nanosatellites.

They currently have three satellite missions in the works. All rely on the fully open source OreSat bus which they are offering as an inexpensive (for a satellite) “DIY” platform for designing and building 1U through 3U CubeSats, paving the way for a solution to the “COTS vs DIY” dilemma.

“OreSat is our fully open source, modular, and re-usable CubeSat system designed for educational teams”, said PSAS members. “OreSat uses a card cage system, which allows cards to be reused on different missions from 1U to 3U CubeSats. Cards include everything you would expect aboard a CubeSat: an on-board computer with multi-band radios, a battery pack, a star tracker, a GPS receiver, and the beginnings of an attitude determination and control system (ADCS). Solar modules are mounted on the outside of the Aluminum frame, along with deployable omnidirectional antennas.”

OreSat0 was deployed into low earth orbit on March 15th, 2021 and has been successfully operating since then. OreSat0.5 is being readied for flight in October 2023, and OreSat1 is scheduled for a deployment off of the international space station in early 2024.

The project

The Portland State Aerospace Society is determined to develop better students through hands-on interdisciplinary systems engineering projects. Everything is designed, built, and tested by interdisciplinary student teams: mechanical engineers work on the structure, thermals, and CAD, Electrical engineers design the cards made of PCBs (standard two and four layers boards), and computer science students program the Linux boxes and microcontrollers that run the CubeSat.

PSAS members added, “There are very few open source satellites in the world, and ours is probably the most fully featured. We are currently collaborating with four other universities who are building satellites and ground stations based on our projects.”

Using industrial 3D Printing and Windform

Before employing Selective Laser Sintering and Windform LX 3.0 for manufacturing subsystems on  OreSat0, PSAS members used other technologies. “We designed and manufactured the parts locally using extremely inexpensive FDM machines until we prototyped a design that worked. We then switched to SLS 3D printing, which worked extremely well. But we couldn’t find SLS parts that could stand the temperature extremes and that were vacuum rated to NASA and ESA outgassing standards.

We were absolutely thrilled to find CRP Technology’s Windform LX 3.0 composite material and CRP USA. With Windform LX 3.0, we could design the parts for 3D printing, run quick turns to prototype on local printers, and then print our final engineering and flight units out of Windform.

It absolutely changed the way we design all parts of our satellite thanks to its characteristics: Windform LX 3.0 can be used in space; it has extremely good material properties; it is extremely easy to work with; it is far superior to other 3D printing materials, including the other FDM, SLA, and SLS technologies that we’ve used.”

OreSat0 Systems Printed in Windform LX 3.0

Deployer for the tri-band turnstile antenna

The team chose Windform LX 3.0, a glass fiber reinforced material from the Windform TOP-LINE range of composite materials for Powder Bed Fusion 3D printing process (Selective Laser Sintering).  It allowed the PSAS team to use 3D printing processes on their critical subsystems, including their extremely reliable deployer for their tri-band turnstile antenna. The antenna has three separate antennas (UHF at 436.5 MHz, L band at 1.265 GHz, and L1 at 1.575 GHz) each with 4 elements; all 12 of these elements are deployed using nylon monofilament lines and only a single melt resistor. According to the team, “There was no way we would have been able to get the packing density of three bands with four elements each in anything other than a 3D printed, non-conductive process. We don’t know of any other satellite with this kind of antenna density.”

Star Tracker Lens and Sensor Assembly

Using CRP’s Windform LX 3.0, PSAS members were able to mount their star tracker sensor and lens  on a small daughterboard that kept the entire assembly to a single 10 mm tall card form factor.

Battery pack

The battery pack needed to reliably hold 18650 cells through vibration testing while also providing thermal and electrical insulation from the rest of the satellite. Windform LX 3.0 allowed PSAS to make an extremely compact battery assembly that was still extremely rugged.

Testing performed on Windform parts

Before integration into the launch vehicle, OreSat0 (with 3D printed parts in Windform LX 3.0) was subjected to the following testing: Three axis 14 g random vibration, -40 to +80 °C thermal cycling, and vacuum cycling. Windform performed flawlessly for all of these tests. “And of course, continue to perform in low earth orbit for the last year” add PSAS members.

Advantages in using Windform LX 3.0

The PSAS team recognized three crucial advantages by the use of Windform LX 3.0 and industrial 3D printing technology/ Selective Laser Sintering process:

  • The SLS process provides robust parts that can take environmental testing, including 14 g of random vibration in all three axes and thermal vacuum cycling from -40 to +80 C.
  • The Windform LX 3.0 provides us critical outgassing compliance that’s not available with any other SLS process.
  • Windform LX 3.0 provides a non-conductive assembly that can be safely used next to electrical components, such as PCBs, batteries, and antennas.

According to the students: “Working with nanosatellites means extremely limited volume for all systems, so the ability to evolve and maximize the use of our space has been very beneficial. We pack a lot into a small space, and we can plan to use nearly every cubic millimeter when we can use 3D printed parts.

Committing to the “final” design is always a tricky step – have we thought everything through?? Once we have the part in hand, it is much more difficult to make changes. Luckily, 3D printing is the fastest way to revise parts if something goes wrong.”

“A satellite  in orbit is exposed to some of the most harsh conditions a system can endure: 14 g of random vibration during launch, the vacuum of space which causes most plastic materials to outgas, and an extreme temperature range from -40 °C (or colder!) to +100 °C (or hotter!). Windform LX 3.0 was a game changer for us: it allowed us to use 3D printing to innovate, rapidly iterate, and minimize the volume and mass of our subsystems while being fully functional when in its final environment: space!”

– The Portland State Aerospace Society satellite team

www.crp-usa.net

www.windform.com

www.pdxaerospace.com

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

3D Printing for Aerospace CRP USA PDX Aerospace space Windform LX 3.0
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

LATEST FROM AM
Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications, Credits: Velo3d News

Velo3D enters CRADA with NAVAIR to Advance Additive Manufacturing for Aerospace and Defense Applications

June 5, 20252 Mins Read
New 3D Printing Technology Enables Dual-Material Creation from Single Resin Uncategorized

New 3D Printing Technology Enables Dual-Material Creation from Single Resin

June 5, 20251 Min Read
Novel Magnetic 3D-Printed Pen News

Novel Magnetic 3D-Printed Pen Can be A Promising Diagnostic Tool for Early-Stage Parkinson’s Disease

June 3, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75