Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    3D Systems Closes Systemic Bio, Founder Continues Mission

    3D Systems Closes Systemic Bio, Founder Continues Mission

    July 26, 2025
    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    July 25, 2025
    The 3D Printed Schools Project is expected to be completed by the end of 2025

    Qatar to Construct World’s Largest 3D-Printed Building

    July 14, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    3D Systems Closes Systemic Bio, Founder Continues Mission

    3D Systems Closes Systemic Bio, Founder Continues Mission

    July 26, 2025
    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

    July 25, 2025
    The 3D Printed Schools Project is expected to be completed by the end of 2025

    Qatar to Construct World’s Largest 3D-Printed Building

    July 14, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Researchers Delve Further Into 3D Printing Mechanical Metamaterials

News By AM Chronicle EditorDecember 31, 20184 Mins Read
pentamode metamaterials
3D printed metallic metamaterials
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Credit: 3dprint.com

Researchers from the Netherlands and Italy have recently published their findings on complex 3D printing research in Multi-material 3D printed mechanical metamaterials: Rational design of elastic properties through spatial distribution of hard and soft phases, authored by M.J. Mirzaali, A. Caracciolo, H. Pahlavani, S. Janbaz, and A.A. Zadpoor.

Exploring the creation of mechanical metamaterials beyond previous designs of geometrical micro-architectures, a research team consisting of scientists from TU Delft and the Department of Mechanical Engineering, Politecnico di Milano worked with 3D printed lattice structures to make multi-material cellular solids. The ultimate goal was to customize the elastic modulus and unusual properties like Poisson’s ratio in varying directions. Other unusual properties in mechanical metamaterials include:

  • Bistability
  • Shape-morphing mechanical metamaterials
  • Negative compressibility
  • Negative stiffness
  • Crumpled metamaterials
  • Tunable negative thermal expansion

Some previous studies have been performed so far with negative Poisson’s ratio in hopes of manipulating properties for metamaterial functions.

“Adjusting the Poisson’s ratio of mechanical metamaterials in a wide range of negative and positive values allows for devising a rich set of new functionalities. For example, negative values of Poisson’s ratios (i.e., auxetic mechanical metamaterials) could be combined with positive values (i.e., conventional mechanical metamaterials) to design orthopedic implants with improved longevity and to enable complex local actuations in soft robotics using a single far-field force,” state the researchers. “At the same time, tailoring the stiffness values of mechanical metamaterials allows for adjustment of their load-bearing capability and compliancy. For example, mechanical metamaterials with extremely high negative or positive Poisson’s ratios often lack high elastic moduli.”

one 3

The Poisson’s ratios of the random multi-material lattice structures made with three unit cell geometries.

two

For this study, the team combined new geometrical designs with complex spatial distributions, 3D printed, to customize the Poisson’s ratio and the elastic modulus. They also used computational models in the design process, after which many different samples were 3D printed, with three different unit cells put into use.  An Object500 Connex3 3D printer was used to make the fifteen samples used, with five being left soft and the others made with multiple materials. Hard samples were printed with VeroCyan, while soft were made with Agilus30 Black. Gripping systems and pins were also created, using an Ultimaker, 3D printing with PLA.

“Tensile mechanical testing was performed under displacement control using an LLOYD instrument (LR5K) mechanical testing machine with a 100 N load cell and a stroke rate of 2 mm/min,” stated the researchers.  “The time, force, and displacement were recorded at a sampling rate of 20 Hz. The force and displacement were used to calculate the stress and strain with respect to the initial cross-section area and the initial free length of the specimens. The stiffness of the structure was determined using the measured stress and strain values. The deformation of the specimens was also captured by a digital camera that was later used to calculate the Poisson’s ratios in both directions using image analysis.”

three 2
(a) Three unit cell geometries ðh ¼ 60; 90; and 120Þ used for the fabrication of lattice structures. A comparison of the numerical results, experimental observations, and theoretical predictions for the lattice structures made from a uniform (soft) material and tested in directions 1 (b) and 2 (c). The regions covered by the mechanical porperties of multi-material mechanical metamaterials with three geometries and random assigment of a hard phase to the elements of the lattice structure until two fractions of the hard material, qh¼ 25% and 50%, were achieved. Moreover, three different values of Eh Es were used to calculate the elastic modulus and Poisson’s ratio in directions 1 (d) and 2 (e). The specific elastic stiffnesses, i.e., normalized by the mass, m, of the sample are presented in (d) and (e).

Accuracy was confirmed for ‘numerical simulations’ by measuring them against testing models.

“The results of this study clearly show that both random and rational distributions of a hard phase could be used for independent tailoring of the elastic modulus and Poisson’s ratio of a soft mechanical metamaterial,” concluded the researchers.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

three 1
The numerical (hollow markers) and experimental (solid markers) results for the elastic properties of multi-material lattice structures with rationally designed hard phases and tested in directions 1 (a) and 2 (b). The arrows compare the results of a corresponding lattice structure with a single soft material with those of the multi-material designs. The experimental and numerical deformation patterns are also compared with each other in directions 1 (c) and 2 (d). The strain distributions show the principal strains obtained using the computational models.
e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3D printed lattice 3D printed mechanical metamaterials 3d printing 3D printing research additive manufacturing Department of Mechanical Engineering I3DPn Indian 3D Printing Network Object500 Connex3 3D printer TU Delft Ultimaker VeroCyan
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
3D Systems Closes Systemic Bio, Founder Continues Mission News

3D Systems Closes Systemic Bio, Founder Continues Mission

July 26, 20252 Mins Read
Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium News

Kre8+ Unveils Advanced Manufacturing Capabilities at Recent Colloquium

July 25, 20251 Min Read
The 3D Printed Schools Project is expected to be completed by the end of 2025 News

Qatar to Construct World’s Largest 3D-Printed Building

July 14, 20252 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75