Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
    Flames stream from New Frontier Aerospace’s Mjölnir rocket engine during a hot-fire test. (NFA Photo)

    New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

    June 24, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    HBD Advances in Metal 3D Printing for Customized Orthopedic Implants

    June 13, 2025
    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone's Reach!

    Revopoint Trackit Now on Kickstarter: Marker-free 3D Scans Within Everyone’s Reach!

    May 28, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International

    Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

    June 28, 2025
    Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt

    Freemelt receives order for Freemelt ONE from a German industrial company

    June 25, 2025
    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery, Credits: Sandvik

    Sandvik and Additive Industries Announce Strategic Partnership for Direct Powder Delivery

    June 25, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

University of Oregon Researchers Develop 3D Printed Fluorescent Structures for Biomedical Implants

News By Chinmay SarafSeptember 30, 20243 Mins Read
University of Oregon
University of Oregon
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Researchers at the University of Oregon have pioneered a 3D printing technique that incorporates fluorescent molecules, resulting in glowing structures that could revolutionize biomedical implants. This advancement makes it easier to track and monitor implants inside the body, distinguishing them from surrounding tissue and cells over time.

The innovation is the result of a collaboration between Paul Dalton’s engineering lab and Ramesh Jasti’s chemistry lab of University of Oregon. The team’s technique, called melt electrowriting, allows for the creation of finely detailed 3D printed mesh scaffolds, which could be used for wound healing, artificial blood vessels, and nerve regeneration. By adding Jasti’s lab’s nanohoops—carbon-based molecules that fluoresce under UV light—the researchers achieved glowing scaffolds without compromising material stability or safety.

The discovery opens doors for applications in both biomedical and security fields, and the team has filed for a patent, with hopes of commercializing the technology in the future.

This advancement enables the tracking and monitoring of implants within the body, distinguishing them from surrounding tissue and cells as time passes. It is the result of a collaboration between the engineering lab of Paul Dalton and the chemistry lab of Ramesh Jasti at the University of Oregon.

The Method Developed by University of Oregon

Their technique, known as melt electrowriting, allows for the creation of intricate 3D printed mesh scaffolds, which have potential applications in wound healing, artificial blood vessels, and nerve regeneration. The researchers successfully incorporated nanohoops from Jasti’s lab—carbon-based molecules that fluoresce under UV light—into the scaffolds, resulting in glowing structures that maintain material stability and safety. This discovery has wide-ranging possibilities in the fields of biomedicine and security, and the team has applied for a patent with the intention of commercializing the technology in the future.

This advancement has the potential to revolutionize the field of implant tracking and monitoring in the human body. The collaboration between Paul Dalton’s engineering lab and Ramesh Jasti’s chemistry lab has resulted in a groundbreaking technique called melt electrowriting.

This technique allows for the creation of highly detailed 3D printed mesh scaffolds that can be utilized in various medical applications such as wound healing, artificial blood vessels, and nerve regeneration. By incorporating Jasti’s lab’s nanohoops, which emit fluorescence under UV light, the researchers have successfully developed scaffolds that exhibit a glowing effect while maintaining material stability and safety. The team has already taken steps to protect their innovation by filing for a patent, with the ultimate goal of bringing this technology to market in the near future.

Chinmay Saraf
  • Website

Technical Writer, AM Chronicle Chinmay Saraf is a scientific writer living in Indore, India. His academic background is in mechanical engineering, and he has substantial experience in fused deposition-based additive manufacturing. Chinmay possesses an M.Tech. in computer-aided design and computer-aided manufacturing and is enthusiastic about 3D printing, product development, material science, and sustainability. He also has a deep interest in "Frugal Designs" to improve the present technical systems.

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet. News

Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

June 28, 20255 Mins Read
Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection, Credits: Platinum Guild International Uncategorized

Platinum Guild International Unveils Inaugural 3D-Printed Platinum Collection

June 28, 20252 Mins Read
Freemelt receives order for Freemelt ONE from a German industrial company, Credits: Freemelt News

Freemelt receives order for Freemelt ONE from a German industrial company

June 25, 20251 Min Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75