Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Ryan Watkins (center) receiving the Advanced Finishing award from Bonnie Meyer (left) and Corey Wardrop.

    Additive Manufacturing Users Group Names Technical Competition Winners

    May 3, 2025
    India Launches 3D Printed Concrete Artificial Reef Project to Boost Marine Biodiversity

    India Launches 3D Printed Concrete Artificial Reef Project to Boost Marine Biodiversity

    April 19, 2025
    AO Metal

    Additive Plus Launches AO Metal – Compact Metal 3D Printers for R&D Labs, Universities, and Small-Scale Manufacturing

    April 19, 2025
    Credits: Haddy

    U.S.-Based Haddy Launches the World’s Largest 3D Printing Factory

    April 12, 2025
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
    Blue White Simple Financial Tips Blog Banner 19

    How 4 Industries Are Transforming with Polymer 3D Printing

    April 25, 2025
    Raman 2 Engine, Credits: Skyroot

    India’s Skyroot Aerospace Tests 3D-Printed Vacuum Engine for Spaceflight

    April 21, 2025
    Customized Medicine

    How 3D Printing is Revolutionizing Customized Medicine

    April 17, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Pre-Launching Poster of Revopoint Trackit Source: Revopoint

    Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

    May 5, 2025
    Ryan Watkins (center) receiving the Advanced Finishing award from Bonnie Meyer (left) and Corey Wardrop.

    Additive Manufacturing Users Group Names Technical Competition Winners

    May 3, 2025
    Blue White Simple Financial Tips Blog Banner 19

    How 4 Industries Are Transforming with Polymer 3D Printing

    April 25, 2025
    Raman 2 Engine, Credits: Skyroot

    India’s Skyroot Aerospace Tests 3D-Printed Vacuum Engine for Spaceflight

    April 21, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Sea sponge skeleton sparks innovative engineering designs

News By AM Chronicle Editorial TeamJuly 1, 20235 Mins Read
Sea sponge skeleton
Structures made by Arizona State University Associate Professor Dhruv Bhate’s research lab, 3DX Research, show the range of junctions found in the Venus’ flower basket sea sponge’s exoskeleton. Bhate is exploring structural engineering designs inspired by the exoskeleton’s lattice structure. Photo by Sona Srinarayana/ASU
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Nature is the ultimate testing ground and source of inspiration for many engineering principles.

Through the trial and error of natural selection, organisms develop innovative methods to withstand and even thrive in adverse conditions. By applying natural features to human-made designs, a practice known as biomimicry, engineers can develop creative and sustainable ways to tackle technological challenges.

One feature found abundantly in nature is the lattice, which connects components of a structure in a strategic pattern to form a durable design. A lattice that can maintain its shape during the application of external force is known as a compliant mechanism. From a finger trap to the support beams of a house or the hexagonal structure in honeycombs, lattices are everywhere.

Dhruv Bhate is an associate professor of engineering who teaches additive manufacturing, biomimicry and design in the School of Manufacturing Systems and Networks, part of the Ira A. Fulton Schools of Engineering at Arizona State University. He and a team of researchers are using design principles exhibited by the exoskeleton of the Venus’ flower basket sea sponge to develop a lattice configuration with novel weaving patterns to achieve structural compliance.

Because of its exceptional design and durability, members of Bhate’s lab, 3DX Research, began studying the sea sponge in collaboration with Clint Penick, an assistant professor of biology at Kennesaw State University, and Nikhilesh Chawla, Ransburg Professor of material science and engineering and acting head of Purdue University’s School of Materials Engineering.

“I think we all went into this project thinking, ‘We’re going to figure out how to build stiff materials,’ but it was actually the opposite,” Penick said. “When we started breaking apart the sponge and assessing how it came together, what we found led to one of the most compliant lattices ever created.”

As they deconstructed the exoskeleton, they noticed that its sturdy woven structure was more fragile and less connected than they had anticipated. The individual beams were brittle, and several junctions consisted of nodes that didn’t connect but instead rubbed against each other.

Yash Mistry, a mechanical engineering doctoral student in Bhate’s lab, examined the impact of the decoupled nodes.

“There are a lot of ways we can control the stiffness and components in a structure,” Mistry said. “I wanted to explore how we can arrange the decoupling of nodes across it to achieve compliance.”

Sea sponge exoskeleton examination

In his most recent publication in the scientific journal Nature Communications Materials, Bhate explained how the team discovered that the sea sponge’s exoskeleton selectively weaves certain junctions to allow for compression and provide an even distribution of force, ultimately achieving compliance by being squishy.

The team at Purdue University performed X-ray tomography scans on the Venus’ flower basket to analyze its structure. From these scans, they determined three distinct patterns of selective decoupling.

Bhate’s team replicated the structures in 3D-printed models. They collaborated with Oliver Weeger, an assistant professor of cyber-physical simulation at the Technical University of Darmstadt in Germany, who performed a series of simulations on the models to determine compliance.

The results suggested that decoupling leads to significant increases in compliance under compression.

“Most lattices are designed to be lightweight and stiff,” Bhate said. “What we’ve done is inverted that and found a lattice that can squish. We’re exploring the idea of a woven anti-lattice while using lattice-based design ideas.”

The design has potential applications in sensory detection as well as absorbing and harvesting energy because of its sensitivity to the detection and distribution of applied force. The team is working with Xiangfan Chen, an assistant professor of mechanical engineering and materials science and engineering in the School of Manufacturing Systems and Networks, to examine how these woven lattices may be fabricated at very small scales.

“We wanted to expand our library of design capabilities and provide a tool to promote a new way of thinking about design, knowing that we would find meaningful applications for things we haven’t thought of yet,” Bhate said.

Lattice design collaboration

Bhate credits the project’s success to Mistry’s creativity, organization and communication skills. Mistry’s take on the project has propelled the project to new heights, Bhate said, noting that his designs motivated the project’s researchers to go the extra mile.

“We set out to find new lattice designs in nature that would behave unexpectedly, with confidence that if it evolved organically, it must be good for something,” Bhate said. “A scientific experiment often begins with an interesting question that is pursued for its own sake, and engineering tends to solve problems. Collaborations like this allow us to do both, and that is its own special kind of joy.”

As a biologist, Penick said he enjoys collaborating with engineers and understanding their different perspectives.

“It’s great to pull ideas from engineering and have engineers pull from biology to see where we’ll find these surprises,” Penick said. “Especially when I get to work with great engineers who are curious and easy to talk to.”

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

Original Source

3d printing additive manufacturing Arizona State University Design engineering designs Sea sponge USA
AM Chronicle Editorial Team

The AM Chronicle Editorial Team is a collective of passionate individuals committed to delivering insightful, accurate and engaging stories to additive manufacturing audiences worldwide.

LATEST FROM AM
Pre-Launching Poster of Revopoint Trackit Source: Revopoint Insights

Revopoint Trackit Optical Tracking 3D Scanner is Launching on Kickstarter Soon!

May 5, 20253 Mins Read
Ryan Watkins (center) receiving the Advanced Finishing award from Bonnie Meyer (left) and Corey Wardrop. News

Additive Manufacturing Users Group Names Technical Competition Winners

May 3, 20255 Mins Read
Blue White Simple Financial Tips Blog Banner 19 Insights

How 4 Industries Are Transforming with Polymer 3D Printing

April 25, 20254 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75