Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    The 3D Printed Schools Project is expected to be completed by the end of 2025

    Qatar to Construct World’s Largest 3D-Printed Building

    July 14, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    3D printing ceramics with Admaflex DLP technology. Photo via Admatec.

    Admatec and Formatec Re-emerge Under New Ownership and Names

    July 3, 2025
    Sailors aboard the Virginia-class attack submarine USS Texas prepare to depart Portsmouth Naval Shipyard after critical repairs and system upgrades. As the Navy works to enhance fleet readiness and extend the service life of submarines like Texas, APL researchers are partnering with the Naval Sea Systems Command to advance additive manufacturing processes — such as laser powder bed fusion — to deliver consistent, mission-ready components and reduce logistics delays across the fleet.

    Johns Hopkins APL, Navy Team up to Advance Additive Manufacturing for Critical Missions

    June 28, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications, Credits: Oerlikon

    Oerlikon Reaches 25,000 3D-Printed Suppressors Milestone, Advancing Next Generation Defense Applications

    June 24, 2025
    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    ArianeGroup and Nikon SLM Solutions Join Forces to Advance Ultra-Large-Scale Additive Manufacturing for Space Applications

    June 21, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    The 3D Printed Schools Project is expected to be completed by the end of 2025

    Qatar to Construct World’s Largest 3D-Printed Building

    July 14, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D

    Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

    July 4, 2025
    LACS equipment set-up to add a coating to repair a panel aircraft wing

    Laser-assisted cold spray: a new generation of innovative manufacturing technology

    July 3, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

World’s first high-resolution brain developed by 3D printer

News By AM Chronicle EditorMarch 25, 20245 Mins Read
csm 3 D Nervenfasern 1d532870bf
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

In a joint project between MedUni Vienna and TU Wien, the world’s first 3D-printed “brain phantom” has been developed, which is modelled on the structure of brain fibres and can be imaged using a special variant of magnetic resonance imaging (dMRI). As a scientific team led by MedUni Vienna and TU Wien has now shown in a study, these brain models can be used to advance research into neurodegenerative diseases such as Alzheimer’s, Parkinson’s and multiple sclerosis. The research work was published in the journal “Advanced Materials Technologies”.

Magnetic resonance imaging (MRI) is a widely used diagnostic imaging technique that is primarily used to examine the brain. MRI can be used to examine the structure and function of the brain without the use of ionising radiation. In a special variant of MRI, diffusion-weighted MRI (dMRI), the direction of the nerve fibres in the brain can also be determined. However, it is very difficult to correctly determine the direction of nerve fibres at the crossing points of nerve fibre bundles, as nerve fibres with different directions overlap there. In order to further improve the process and test analysis and evaluation methods, an international team in collaboration with the Medical University of Vienna and TU Wien developed a so-called “brain phantom”, which was produced using a high-resolution 3D printing process.

Tiny cube with microchannels
Researchers from the Medical University of Vienna as MRI experts and TU Wien as 3D printing experts worked closely with colleagues from the University of Zurich and the University Medical Centre Hamburg-Eppendorf. Back in 2017, a two-photon polymerisation printer was developed at TU Wien that enables upscaled printing. In the course of this, work was also carried out on brain phantoms as a use case together with the Medical University of Vienna and the University of Zurich. The resulting patent forms the basis for the brain phantom that has now been developed and is being supervised by TU Wien’s Research and Transfer Support team.

Visually, this phantom does not have much to do with a real brain. It is much smaller and has the shape of a cube. Inside it are extremely fine, water-filled microchannels the size of individual cranial nerves. The diameters of these channels are five times thinner than a human hair. In order to imitate the fine network of nerve cells in the brain, the research team led by first authors Michael Woletz (Center for Medical Physics and Biomedical Engineering, MedUni Vienna) and Franziska Chalupa-Gantner (3D Printing and Biofabrication research group, TU Wien) used a rather unusual 3D printing method: two-photon polymerisation. This high-resolution method is primarily used to print microstructures in the nanometre and micrometre range – not for printing three-dimensional structures in the cubic millimetre range. In order to create phantoms of a suitable size for dMRI, the researchers at TU Wien have been working on scaling up the 3D printing process and enabling the printing of larger objects with high-resolution details. Highly scaled 3D printing provides the researchers with very good models that – when viewed under dMRI – make it possible to assign various nerve structures. Michael Woletz compares this approach to improving the diagnostic capabilities of dMRI with the way a mobile phone camera works: “We see the greatest progress in photography with mobile phone cameras not necessarily in new, better lenses, but in the software that improves the captured images. The situation is similar with dMRI: using the newly developed brain phantom, we can adjust the analysis software much more precisely and thus improve the quality of the measured data and reconstruct the neural architecture of the brain more accurately.”

Brain phantom trains analysis software
The authentic reproduction of characteristic nerve structures in the brain is therefore important for “training” the dMRI analysis software. The use of 3D printing makes it possible to create diverse and complex designs that can be modified and customised.  The brain phantoms thus depict areas in the brain that generate particularly complex signals and are therefore difficult to analyse, such as intersecting nerve pathways. In order to calibrate the analysis software, the brain phantom is therefore examined using dMRI and the measured data is analysed as in a real brain. Thanks to 3D printing, the design of the phantoms is precisely known and the results of the analysis can be checked. MedUni Vienna and TU Wien were able to show that this works as part of the joint research work. The phantoms developed can be used to improve dMRI, which can benefit the planning of operations and research into neurodegenerative diseases such as Alzheimer’s, Parkinson’s and multiple sclerosis.

Despite the proof of concept, the team still faces challenges. The biggest challenge at the moment is scaling up the method: “The high resolution of two-photon polymerisation makes it possible to print details in the micro- and nanometre range and is therefore very suitable for imaging cranial nerves. At the same time, however, it takes a correspondingly long time to print a cube several cubic centimetres in size using this technique,” explains Chalupa-Gantner. “We are therefore not only aiming to develop even more complex designs, but also to further optimise the printing process itself.”

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

Original Source

3D bio printing 3d printing additive manufacturing brain brain model MedUni Vienna
AM Chronicle Editor

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
The 3D Printed Schools Project is expected to be completed by the end of 2025 News

Qatar to Construct World’s Largest 3D-Printed Building

July 14, 20252 Mins Read
Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management Insights

Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

July 4, 202520 Mins Read
Qatar Unveils Largest 3D-Printed Boat by GORD 3D, Credits: GORD 3D News

Qatar’s Largest 3D-Printed Boat Manufactured at GORD 3D Center

July 4, 20252 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75