Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    Altair Supports MAM4HP Project to Advance Additive Manufacturing in Italy

    May 20, 2025
    The new standard in 3D concrete printing: Saint-Gobain Weber certified by Kiwa!

    The new standard in 3D concrete printing: Saint-Gobain Weber certified by Kiwa!

    May 20, 2025
    Image credit: Philips

    Philips Unveils 3D-Printable Components for Product Repair, Promoting Sustainability

    May 19, 2025
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
    Source: CEAD

    CEAD Set to Launch 3D-Printed Boat Manufacturing Facility

    May 19, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Namthaja Unveils Worlds First 3D Printed Marine Gangway

    Worlds First 3D Printed Marine Gangway unveiled by Namthaja

    August 8, 2024
    RusselSmith Material Performance Improvement Whitepaper

    RusselSmith Whitepaper : Improving Material Performance with Microstructural Refinement

    May 9, 2024
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Credits: Outokumpu

    Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

    May 22, 2025
    World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture

    World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

    May 22, 2025
    Why Bioprinting Innovations can elevate healthcare and industrial AM

    Why Bioprinting Innovations can elevate healthcare and industrial AM

    May 21, 2025
    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    Why Additive Manufacturing Excels in Some Applications but Fails in Others?

    May 21, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
    • Print Subscription
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

Engineers at MIT uses additive manufacturing to build Origami “Magic-ball” Soft Gripper

News By AM Chronicle EditorMarch 19, 20193 Mins Read
origami gripper mit csail 00 0
The origami-inspired gripper holding an apple. 
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Engineers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have used 3D printing to build a robotic device capable of gripping a wide range of objects.

The findings of the research were published in a paper titled, A Vacuum-driven Origami “Magic-ball” Soft Gripper.

Co-author of the paper and Professor at Wyss Institute for Biologically Inspired Engineering, Robert Wood, said, “One of the key features of this approach to manipulator construction is its simplicity.”

“THE MATERIALS AND FABRICATION STRATEGIES USED ALLOW US TO RAPIDLY PROTOTYPE NEW GRIPPERS, CUSTOMIZED TO OBJECT OR ENVIRONMENT AS NEEDED.”

Origami magic ball

In robotics research, 3D printing is proving a competent method for testing prototypes and manufacturing fully functional devices. Examples of recent research in soft robotics, modular robots, and Wyss Institute‘s bioinspired robotic hand for studying fauna have emphatically brought this point forward.

The latest research was founded upon the team’s previous concept called Fluid-driven Origami-inspired Artificial Muscle (FOAM). The FOAM consists of an airtight skin and a malleable skeleton structure which contracts under negative pressure.

The newly created ‘magic ball’ gripper works on the same principle as FOAM and is inspired by origami magic ball. The magic ball gripper is smaller in size with increased skin constriction, which increases the strength of the grip.

An origami magic ball. Image via YouTube.
An origami magic ball. Image via YouTube.

A little help, please

Three different prototypes of the ‘magic ball’ were made, with different material and dimensions. Using the Stratasys Fortus 400, the research team 3D printed molds in ABS to cast the gripper. Two of the grippers were cast in silicon rubber and one was made with PET/PVC/Kapton composite and TPU coated nylon.

Co-author of the research and MIT professor Daniela Rus talked about her future vision for such robots. Rus said, “One of my moonshots is to create a robot that can automatically pack groceries for you.”

Shuguang Li, a joint postdoc at MIT CSAIL and Harvard‘s John A. Paulson School of Engineering and Applied Sciences (SEAS), elaborated further, “Companies like Amazon and JD want to be able to pick up a wider array of delicate or irregular-shaped objects, but can’t with finger-based and suction-cup grippers” […] “Suction-cups can’t pick up anything with holes – and they’d need something much stronger than a soft-finger-based gripper.”

3D printed casts for molding the origami gripper. Image via MIT.
3D printed casts for molding the origami gripper. Image via MIT.

Grip anything

The grippers were attached to a Baxter industrial robot and were tested using 3D printed objects. These objects were mounted to an Instron machine, so the weight of the object itself was immaterial to the study of stress, tension, and pressure.

Objects ranging from fruits like grapes, mushroom, and coke bottles were lifted using the magic ball gripper. It was shown that the gripper can lift up to 2 kg.

Rus explained, “Previous approaches to the packing problem could only handle very limited classes of objects — objects that are very light or objects that conform to shapes such as boxes and cylinders, but with the Magic Ball gripper system we’ve shown that we can do pick-and-place tasks for a large variety of items ranging from wine bottles to broccoli, grapes and eggs.”

“IN OTHER WORDS, OBJECTS THAT ARE HEAVY AND OBJECTS THAT ARE LIGHT. OBJECTS THAT ARE DELICATE, OR STURDY, OR THAT HAVE REGULAR OR FREE FORM SHAPES.”

The research discussed in this article is titled, A Vacuum-driven Origami “Magic-ball” Soft Gripper, published in the Proceedings of the 2019 IEEE International Conference on Robotics and Automation. The authors of this paper are Shuguang Li, John J. Stampfli, Helen J. Xu, Elian Malkin, Evelin Villegas Diaz, Daniela Rus, Robert J. Wood.

Source: 3dprintingindustry

e22cc466a6e7392fb7e2617b2e35c0d1?s=120&d=mp&r=g
AM Chronicle Editor
3D printed molds 3D printed objects 3d printing Artificial Muscle bioinspired robotic hand CSAIL I3DPn Indian 3D Printing Network MIT Researchers Origami soft robotics Stratasys
AM Chronicle Editor

LATEST FROM AM
Credits: Outokumpu Insights

Outokumpu launches stainless steel metal powder in additive manufacturing for aerospace and aviation industry applications

May 22, 20252 Mins Read
World's tallest 3D-printed tower unveiled in Switzerland, Photo by Birdviewpicture News

World’s Tallest 3D-Printed Tower Constructed at Swiss Alps

May 22, 20254 Mins Read
Why Bioprinting Innovations can elevate healthcare and industrial AM Insights

Why Bioprinting Innovations can elevate healthcare and industrial AM

May 21, 20255 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75