Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Caracol and RusselSmith Sign a Strategic Partnership to Drive Advanced Manufacturing in West Africa

    Caracol and RusselSmith Sign a Strategic Partnership to Drive Advanced Manufacturing in West Africa

    October 3, 2025
    NAMI and Lockheed Martin Collaborate for Additive Manufacturing Conversion Project

    NAMI and Lockheed Martin Collaborate for Additive Manufacturing Conversion Project 

    September 16, 2025
    LEGO Introduces First Mass-Produced 3D Printed Piece in New Holiday Train Set

    LEGO Introduces First Mass-Produced 3D Printed Piece in New Holiday Train Set

    September 15, 2025
    Boeing Revolutionizes Satellite Production with 3D-Printed Solar Arrays

    Boeing Revolutionizes Satellite Production with 3D-Printed Solar Arrays

    September 15, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Ms. Larissa Smith, Director, Advanced Manufacturing, DRPM, Maritime Industrial Base Program, U.S. Navy, and Mr. Ken Jeanos, VP, Materials and Supply Chain, General Dynamics Electric Boat, are joined by Lincoln Electric leadership and its Additive Solutions team to commemorate the ribbon cutting that marks the investment of four SculptPrint™ 1500 additive manufacturing cells to support the production of critical submarine components.

    U.S. Navy’s Maritime Industrial Base Program, General Dynamics Electric Boat, and Lincoln Electric Advance Additive Manufacturing to Strengthen Submarine Production

    October 3, 2025
    Caracol and RusselSmith Sign a Strategic Partnership to Drive Advanced Manufacturing in West Africa

    Caracol and RusselSmith Sign a Strategic Partnership to Drive Advanced Manufacturing in West Africa

    October 3, 2025

    Book References

    September 20, 2025
    NAMI and Lockheed Martin Collaborate for Additive Manufacturing Conversion Project

    NAMI and Lockheed Martin Collaborate for Additive Manufacturing Conversion Project 

    September 16, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » News

3D-printed concrete project supports U.S. Army research

News By Chinmay SarafDecember 30, 20244 Mins Read
3D printed concrete
3D printed concrete
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

Here’s the problem: the Army needs a building or bridge for a forward-deployment mission in another country. Shipping a full-scale structure or building materials may not be an option, especially if the mission is in a conflict zone.

That’s the basis of a current research project led by Civil & Environmental Engineering Assistant Professor Floriana Petrone and Associate Research Professor Sherif Elfass in collaboration with the U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory (CERL) and supported by the U.S. Department of Defense.

Petrone and her team are focusing on the integrity and performance of structures built using 3D-printed LEGO-like concrete modules. The team’s experimental program, which began in early 2024, involves testing “bridging infrastructure” they have assembled with 3-foot-long concrete modules they have printed. The bridge was tested and numerically simulated— a computational technique to simulate and analyze real-world systems through mathematical models — to validate the experiments.

“We are following a structured approach,” Petrone said, “introducing rigor in the way we approach the printing.”

Early work in 3D-printed structures has necessarily been conducted in a trial-and-error — or Edisonian — style, but the University of Nevada, Reno is perfecting a more precise way to test 3D-printed structures.

This work aims to advance the Army’s ability to construct needed infrastructure in a conflict zone or area where military operations are taking place. Petrone’s project differs from many others in this area in that it combines 3D-printing, segmental construction — building large structures by assembling smaller components — and advanced numerical simulation. Together, these provide a basis for building reliably sound, scalable structures.

Commencing compression test …

In a corner of the Large-Scale Structures Laboratory (LSSL) on the University’s campus, Petrone and team have been 3D-printing concrete components in the shape of Ls and Ts using a mid-scale 3D printer from the U.S. Army.

Concrete block held together with cables and hooked to sensors in a compression test machine.
3D-printed concrete segments were tested as part of the research work.

This fall, the team gathered in the same lab for a load test: about seven concrete segments held together with post-tensioned cable running through the center of the components underwent an increasing amount of load. This narrow section of “bridge” took up to 7,000 pounds of load. 

“We’re very pleased with this,” Elfass said, referring to the bridge performance.

Sensors attached to the components gathered data that will be used for the analyses and numerical simulation done by postdoctoral scholar Satish Paudel and undergraduate researcher Allen Rivas.

One of the next steps, Petrone said, will be to widen the test sample by adding additional components and investigate connections for accelerated construction. The project is funded through June 2025.

Providing a solid technical basis

The ultimate project objective, Petrone said, is to provide the Army with a solid technical basis on how to print and assemble needed structures in the field. She and her team have kept this mission in mind throughout the project, thinking through processes such as how the 3D-printed components will be connected to each other. In the case of their current project, the components connect to each other with cables that don’t need specialized equipment.

“Everything could be assembled manually on site,” Petrone said about the cabling system, because specialized equipment may not be available in a combat zone.

Structures theoretically could be disassembled into their component parts when they no longer are needed and reassembled into different configurations. Printing identical structural components enables highly adaptable designs, according to Elfass, and the research he and Petrone are conducting will help engineers in the field connect those components in a way that produces structurally sound infrastructure.

“The integration of numerical modeling with 3D printing and segmental construction provides a powerful tool for predicting structural performance before construction even begins,” Elfass wrote. “This allows engineers to optimize the placement of segments and the design of printed components, ensuring that printed structures meet the necessary strength and durability requirements in a variety of conditions.”

Original Source

3d printing additive manufacturing
Chinmay Saraf
  • Website

Technical Writer, AM Chronicle Chinmay Saraf is a scientific writer living in Indore, India. His academic background is in mechanical engineering, and he has substantial experience in fused deposition-based additive manufacturing. Chinmay possesses an M.Tech. in computer-aided design and computer-aided manufacturing and is enthusiastic about 3D printing, product development, material science, and sustainability. He also has a deep interest in "Frugal Designs" to improve the present technical systems.

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Ms. Larissa Smith, Director, Advanced Manufacturing, DRPM, Maritime Industrial Base Program, U.S. Navy, and Mr. Ken Jeanos, VP, Materials and Supply Chain, General Dynamics Electric Boat, are joined by Lincoln Electric leadership and its Additive Solutions team to commemorate the ribbon cutting that marks the investment of four SculptPrint™ 1500 additive manufacturing cells to support the production of critical submarine components. Uncategorized

U.S. Navy’s Maritime Industrial Base Program, General Dynamics Electric Boat, and Lincoln Electric Advance Additive Manufacturing to Strengthen Submarine Production

October 3, 20252 Mins Read
Caracol and RusselSmith Sign a Strategic Partnership to Drive Advanced Manufacturing in West Africa News

Caracol and RusselSmith Sign a Strategic Partnership to Drive Advanced Manufacturing in West Africa

October 3, 20252 Mins Read

Book References

September 20, 20257 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

CNT Expositions & Services
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75